I'm trying to look into the A* Algorithm but I'm kind of having a hard time understanding a specific part. So the A* Algorithm Python Code with the example is this:
class Node():
"""A node class for A* Pathfinding"""
def __init__(self, parent=None, position=None):
self.parent = parent
self.position = position
self.g = 0
self.h = 0
self.f = 0
def __eq__(self, other):
return self.position == other.position
def astar(maze, start, end):
"""Returns a list of tuples as a path from the given start to the given end in the given maze"""
# Create start and end node
start_node = Node(None, start)
start_node.g = start_node.h = start_node.f = 0
end_node = Node(None, end)
end_node.g = end_node.h = end_node.f = 0
# Initialize both open and closed list
open_list = []
closed_list = []
# Add the start node
open_list.append(start_node)
# Loop until you find the end
while len(open_list) > 0:
# Get the current node
current_node = open_list[0]
current_index = 0
for index, item in enumerate(open_list):
if item.f < current_node.f:
current_node = item
current_index = index
# Pop current off open list, add to closed list
open_list.pop(current_index)
closed_list.append(current_node)
# Found the goal
if current_node == end_node:
path = []
current = current_node
while current is not None:
path.append(current.position)
current = current.parent
return path[::-1] # Return reversed path
# Generate children
children = []
for new_position in [(0, -1), (0, 1), (-1, 0), (1, 0), (-1, -1), (-1, 1), (1, -1), (1, 1)]: # Adjacent squares
# Get node position
node_position = (current_node.position[0] + new_position[0], current_node.position[1] + new_position[1])
# Make sure within range
if node_position[0] > (len(maze) - 1) or node_position[0] < 0 or node_position[1] > (len(maze[len(maze)-1]) -1) or node_position[1] < 0:
continue
# Make sure walkable terrain
if maze[node_position[0]][node_position[1]] != 0:
continue
# Create new node
new_node = Node(current_node, node_position)
# Append
children.append(new_node)
# Loop through children
for child in children:
# Child is on the closed list
for closed_child in closed_list:
if child == closed_child:
continue
# Create the f, g, and h values
child.g = current_node.g + 1
child.h = ((child.position[0] - end_node.position[0]) ** 2) + ((child.position[1] - end_node.position[1]) ** 2)
child.f = child.g + child.h
# Child is already in the open list
for open_node in open_list:
if child == open_node and child.g > open_node.g:
continue
# Add the child to the open list
open_list.append(child)
def main():
maze = [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]]
start = (4, 3)
end = (4, 5)
path = astar(maze, start, end)
print(path)
if __name__ == '__main__':
main()
In the
for index, item in enumerate(open_list):
if item.f < current_node.f:
current_node = item
current_index = index
I don't get how the current_node can be defined as the item in the maze I've given above. In the example I've given above, the start = (4,3) and end = (4,5), giving the only possible shortest distance would be as something like the following:
maze = [[0, 0, 0, 0, *, 0, 0, 0, 0, 0],
[0, 0, 0, *, 1, *, 0, 0, 0, 0],
[0, 0, 0, *, 1, *, 0, 0, 0, 0],
[0, 0, 0, *, 1, *, 0, 0, 0, 0],
[0, 0, 0, s, 1, e, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0, 0, 0]]
with the s
being the start_node and e
being the end_node.
However, in the code of the A* Algorithm, the current_node
becomes the item
only if the item.f is smaller than the current_node.f. In the example I've given here, I can't see that the first *
would have an f value smaller than the f value of the start_node
- I mean, in the code, we already have described the start_node.f
= 0 haven't we? And we defined the first current_node
as the start_node
... so no item
in the open_list
would have an item.f value smaller than zero..
How is this possible?? Or am I missing something here??
I think the clue is that you have to take into account the two lines above this for loop as well:
# Get the current node
current_node = open_list[0]
current_index = 0
for index, item in enumerate(open_list):
if item.f < current_node.f:
current_node = item
current_index = index
What happens:
open_list.pop(current_index)
current_node = open_list[0]
, you will be sure that the new current_node is always one from the open_list.