I am trying to get blender render depth map of an object and then moving it to overlay the original object. Currently I have no issue with rendering the object and extracting it into it's place.
However, I am stuck when trying to position the object into it's original position.
I'm trying to apply inverse camera world matrix to the rendered pointcloud (in blue). Unfortunately, when I apply said camera inverse it doesn't appear nowhere near where I'd expect (in red).
I have attached the entirety of code that I have to replicate this behaviour. I would appreciate it if someone would point me to the right matrix that I should be multiplying the point cloud by.
from mathutils import Vector, Quaternion, Euler, Matrix
import numpy as np
import bpy
def main_script():
clear_scene()
prepare_views()
tmp_path = "/tmp/tmp_render.exr"
scene = get_scene("Scene")
camera = create_camera("Camera")
camera.rotation_euler = Euler([np.pi * 0.5, 0, np.pi * 0.5], "XYZ")
camera.location = Vector([4.5, 0, 1])
bpy.ops.mesh.primitive_monkey_add(
location=(0, 0, 1), rotation=(0, 0, np.pi*0.5), size=1.0)
_w, _h = 640, 480
update_scene()
init_rendering(scene, camera, width=640, height=480)
update_scene()
matrix_K = get_calibration_matrix_K_from_blender(scene, camera.data)
_fy, _fx = matrix_K[0][0], matrix_K[1][1]
_cy, _cx = matrix_K[0][2], matrix_K[1][2]
scene.render.filepath = tmp_path
bpy.ops.render.render(write_still=True)
depth = read_exr(tmp_path, "R")["R"]
depth = np.reshape(convert_to_numpy(depth), [_h, _w])
exr_cloud = depth_to_cloud(
_w, _h, _fx, _fy, _cx, _cy, depth)
exr_cloud = np.reshape(exr_cloud, [-1, 3])
exr_cloud = exr_cloud[(exr_cloud[..., 2] < 100) & (exr_cloud[..., 2] > 0)]
matrix = np.reshape(camera.matrix_world, [4, 4])
matrix = np.linalg.inv(matrix) # why doesn't this place the depth properly
vertices = np.ones([exr_cloud.shape[0], 4], dtype=np.float32)
vertices[:, 0:3] = exr_cloud
vertices = np.array(
[matrix @ vertex for vertex in vertices], dtype=np.float32)
vertices = vertices[..., :3]
create_mesh("Suzanne_EXR", exr_cloud, [])
create_mesh("SuzanneT_EXR", vertices, [])
"""
utilities methods required to run the script
"""
def clear_scene():
for scene in bpy.data.scenes:
for obj in scene.objects:
bpy.context.collection.objects.unlink(obj)
def read_exr(path, channels):
import OpenEXR as _OpenEXR
import Imath as _Imath
file = _OpenEXR.InputFile(path)
FLOAT = _Imath.PixelType(_Imath.PixelType.FLOAT)
results = {}
for ch in channels:
results[ch] = file.channel(ch, FLOAT)
file.close()
return results
def convert_to_numpy(data):
import array as _array
return np.array(_array.array("f", data).tolist())
def update_scene():
dg = bpy.context.evaluated_depsgraph_get()
dg.update()
def prepare_views():
preferences = bpy.context.preferences
preferences.view.show_tooltips_python = True
preferences.view.show_developer_ui = True
preferences.view.render_display_type = "NONE"
def init_rendering(scene, camera, width=None, height=None):
def set_rendering_settings(camera, scene, width=640, height=480):
image_settings = scene.render.image_settings
image_settings.file_format = "OPEN_EXR"
image_settings.use_zbuffer = True
scene.render.resolution_x = width
scene.render.resolution_y = height
# scene.render.use_antialiasing = False
scene.use_nodes = True
scene.camera = camera
node_tree = scene.node_tree
nodes = node_tree.nodes
node_render_layers = nodes["Render Layers"]
node_composite = nodes["Composite"]
node_tree.links.clear()
node_tree.links.new(
node_render_layers.outputs["Depth"], node_composite.inputs["Image"])
set_rendering_settings(camera, scene)
def get_scene(name): return bpy.data.scenes[name]
def create_camera(name):
camera = bpy.data.cameras.new(name)
camera.lens = 50
obj = bpy.data.objects.new(name, camera)
bpy.context.collection.objects.link(obj)
return obj
# ---------------------------------------------------------------
# 3x4 P matrix from Blender camera
# ---------------------------------------------------------------
# Build intrinsic camera parameters from Blender camera data
#
# See notes on this in
# blender.stackexchange.com/questions/15102/what-is-blenders-camera-projection-matrix-model
def get_calibration_matrix_K_from_blender(scene, camera):
from mathutils import Matrix as _Matrix
f_in_mm = camera.lens
resolution_x_in_px = scene.render.resolution_x
resolution_y_in_px = scene.render.resolution_y
scale = scene.render.resolution_percentage / 100
sensor_width_in_mm = camera.sensor_width
sensor_height_in_mm = camera.sensor_height
pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y
if (camera.sensor_fit == 'VERTICAL'):
# the sensor height is fixed (sensor fit is horizontal),
# the sensor width is effectively changed with the pixel aspect ratio
s_u = resolution_x_in_px * scale / sensor_width_in_mm / pixel_aspect_ratio
s_v = resolution_y_in_px * scale / sensor_height_in_mm
else: # 'HORIZONTAL' and 'AUTO'
# the sensor width is fixed (sensor fit is horizontal),
# the sensor height is effectively changed with the pixel aspect ratio
pixel_aspect_ratio = scene.render.pixel_aspect_x / scene.render.pixel_aspect_y
s_u = resolution_x_in_px * scale / sensor_width_in_mm
s_v = resolution_y_in_px * scale * pixel_aspect_ratio / sensor_height_in_mm
# Parameters of intrinsic calibration matrix K
alpha_u = f_in_mm * s_u
alpha_v = f_in_mm * s_v
u_0 = resolution_x_in_px * scale / 2
v_0 = resolution_y_in_px * scale / 2
skew = 0 # only use rectangular pixels
K = _Matrix(
((alpha_u, skew, u_0),
(0, alpha_v, v_0),
(0, 0, 1)))
return K
def create_mesh(name, vertices, faces):
import bmesh as _bmesh
mesh = bpy.data.meshes.new("Mesh_%s" % name)
mesh.from_pydata(vertices, [], faces)
mesh.update()
obj = bpy.data.objects.new(name, mesh)
bpy.context.collection.objects.link(obj)
bm = _bmesh.new()
bm.from_mesh(mesh)
bm.to_mesh(mesh)
bm.free()
return obj
def depth_to_cloud(w, h, fx, fy, cx, cy, depth):
from numpy import concatenate as _concat
from numpy import indices as _indices
from numpy import newaxis as _newaxis
indices = _indices(depth.shape)
indices_y, indices_x = indices
ys, xs, zs = \
(indices_y - cy) * depth / fy, \
(indices_x - cx) * depth / fx, \
depth
points = _concat([xs[..., _newaxis], ys[..., _newaxis],
zs[..., _newaxis]], axis=2)
return points
if __name__ == "__main__":
raise main_script()
The problem was compound, first I needed to replace my transformed vertex calculation from instead using inverse camera world matrix, to negatively scaled camera world matrix like so
matrix_cam = np.reshape(camera.matrix_world, [4, 4])
mat_scale = np.array(Matrix.Scale(-1, 4))
matrix = matrix_cam @ mat_scale
vertices = np.ones([exr_cloud.shape[0], 4], dtype=np.float32)
vertices[:, 0:3] = exr_cloud
vertices = np.array(
[matrix @ vertex for vertex in vertices], dtype=np.float32)
vertices = vertices[..., :3]
Additionally, there was an issue with depth decoding which caused the point cloud to be deformed, fixed like so
ys, xs, zs = \
(indices_y - cx) * depth / fx, \
(indices_x - cy) * depth / fy, \
depth