Problem summary:
I have two dataframes. The first dataframe (df1) is relatively small (Nearly always less than 100 observations, typically less than 50), with a set of point identifiers and their lat/lon coordinates. The second dataframe (df2) is very large (hundreds of thousands of observations) which also has lat/lon coordinates. I wish to create two new columns in df2: the first has the identifier of the nearest point from df1, the second has the distance to that point. My current method is quite clunky and I think can be optimized significantly. For additional context, there is a single df1 (small dataframe), but I will be repeating this process for multiple df2s (large dataframes).
Setup/Sample Data:
# imports:
import pandas as pd
import geopy.distance
from faker import Faker
# creating sample data:
Faker.seed(0)
fake=Faker()
id1=[]
lat1=[]
lon1=[]
id2=[]
lat2=[]
lon2=[]
length1=10 # length of df1
length2=100 # length of df2
for x in range(length1):
a=fake.local_latlng()
id1.append(x)
lat1.append(float(a[0]))
lon1.append(float(a[1]))
for x in range(length2):
a=fake.local_latlng()
id2.append(x)
lat2.append(float(a[0]))
lon2.append(float(a[1]))
dict1={
'loc_id' : id1,
'lat' : lat1,
'lon' : lon1,
}
dict2={
'point_id' : id2,
'lat' : lat2,
'lon' : lon2,
}
df1=pd.DataFrame(dict1)
df2=pd.DataFrame(dict2)
Current Solution:
# calculating distances:
for x in range(len(df1)):
loc_id=df1.iloc[x]['loc_id']
pt1=(df1.iloc[x]['lat'],df1.iloc[x]['lon'])
for y in range(len(df2)):
pt2=(df2.iloc[y]['lat'],df2.iloc[y]['lon'])
dist=geopy.distance.distance(pt1,pt2).miles
df2.loc[y,x]=dist
# determining minimum distance and label:
temp_cols=list(range(len(df1)))
df2['min_dist']=df2[temp_cols].min(axis=1)
df2['min_loc']=df2[temp_cols].idxmin(axis=1)
# removing extra columns:
df2=df2.drop(temp_cols,axis=1)
print(df2.head())
Possible solutions:
This code is quite obviously slow, since I compute the distance for each pair of points. Conceptually, I think this can be improved, but I'm having trouble implementing the improvements. Some ideas:
Additional details: The odds of two points having identical distances is small, and I am happy randomly selecting any point that ties for closest if that should come up.
Based upon k-nearest neighbor using Balltree
Approach
Code
import pandas as pd
import numpy as np
from faker import Faker
from sklearn.neighbors import BallTree
from geopy import distance
import functools
import time
# Timing Decorator
def timer(func):
"""Print the runtime of the decorated function"""
@functools.wraps(func)
def wrapper_timer(*args, **kwargs):
start_time = time.perf_counter() # 1
value = func(*args, **kwargs)
end_time = time.perf_counter() # 2
run_time = end_time - start_time # 3
print(f"Finished {func.__name__!r} in {run_time:.4f} secs")
return value
return wrapper_timer
def generate_data(length):
'''
Genearte data frame with random lat/lon data
Data with same length is always identical since we use same initial seed
'''
Faker.seed(0)
fake = Faker()
id = list(range(length))
# First two fields of fake.local_latlng are lat & lon as string
# Generate vector of fake.local_latlng then unpack out lat/lon array
lat, lon = list(zip(*[fake.local_latlng() for _ in range(length)]))[:2]
# Convert strings to float
lat = [float(x) for x in lat]
lon = [float(x) for x in lon]
return pd.DataFrame({'point_id':id, 'lat':lat, 'lon':lon})
def generate_balltree(df):
'''
Generate Balltree using customize distance (i.e. Geodesic distance)
'''
return BallTree(df[['lat', 'lon']].values, metric=lambda u, v: distance.distance(u, v).miles)
@timer
def find_matches(tree, df):
'''
Find closest matches in df to items in tree
'''
distances, indices = tree.query(df[['lat', 'lon']].values, k = 1)
df['min_dist'] = distances
df['min_loc'] = indices
return df
@timer
def find_min_op(df1, df2):
' OP solution (to compare timing) '
for x in range(len(df1)):
#loc_id=df1.iloc[x]['loc_id'] # not used
pt1=(df1.iloc[x]['lat'],df1.iloc[x]['lon'])
for y in range(len(df2)):
pt2=(df2.iloc[y]['lat'],df2.iloc[y]['lon'])
dist=distance.distance(pt1,pt2).miles
df2.loc[y,x]=dist
# determining minimum distance and label:
temp_cols=list(range(len(df1)))
df2['min_dist']=df2[temp_cols].min(axis=1)
df2['min_loc']=df2[temp_cols].idxmin(axis=1)
# removing extra columns:
df2 = df2.drop(columns = temp_cols)
return df2
Tests
df1 = 100 elements, df2 = 1000 elements
l1, l2 = 100, 1000
df1 = generate_data(l1)
df2 = generate_data(l2)
tree = generate_balltree(df1)
find_matches(tree, df2)
df2 = generate_data(l2) # Regenerate df2 for next test since find_matches modified it
find_min_op(df1, df2)
Output
Finished 'find_matches' in 32.1677 secs
Finished 'find_min_op' in 147.7042 secs
Thus, this approach ~5x faster in this test