I have a pandas dataframe:
pd.DataFrame({
'student_id': ['5', '5', '5', '5', '2', '2'],
'start_date': ['2020-11-11', '2020-11-11', '2020-11-11', '2020-12-05', '2020-11-25', '2020-11-25']
})
I want to group the df by 'student_id' and count how many of the same start dates occur for each row. Then I want to cast this back to the original dataframe. For example, I would create a new column called 'course_enroll_count'. The first three rows would display 3 because the student has 3 start dates of '2020-11-11'. Expected output:
pd.DataFrame({
'student_id': ['5', '5', '5', '5', '2', '2'],
'start_date': ['2020-11-11', '2020-11-11', '2020-11-11', '2020-12-05', '2020-11-25', '2020-11-25'],
'course_enroll_count': [3, 3, 3, 1, 2, 2]
})
Try with transform
df['new'] = df.groupby(['student_id','start_date'])['start_date'].transform('count')
df
Out[313]:
student_id start_date new
0 5 2020-11-11 3
1 5 2020-11-11 3
2 5 2020-11-11 3
3 5 2020-12-05 1
4 2 2020-11-25 2
5 2 2020-11-25 2