I am currently using polynomial defined function to create a 3d curve fitting but to no avail. image 1 scatter, image 2 curve fitting code is given below:
#import excel data
"""
how can I improve this polynomial function,
is there any better methods instead of polynomial?
"""
def func(data, a, b, c, d):
x = data[0]
y = data[1]
z = data[2]
return a + b * x + c * y + d * x**2
# using curve fitting to pass the function
fittedParameters, pcov = scipy.optimize.curve_fit(
func, [xData, yData, zData],
zData, p0 = None, method= 'lm', maxfev=5000000
) #, p0 = None, maxfev=5000
# making mesh grid
# making meshgrid
xModel = numpy.linspace( min(x_data), max(x_data), 80) #min(x_data)
yModel = numpy.linspace( min(y_data), max(y_data), 80)
X, Y = numpy.meshgrid( xModel, yModel )
#popt = fittedparameters
a = fittedParameters[0]
b = fittedParameters[1]
c = fittedParameters[2]
d = fittedParameters[3]
x = X
y = Y
Z = a + b * x + c * y + d * x**2
axes.plot_surface(
X, Y, Z,
rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=1, antialiased=True
)
axes.scatter(x_data, y_data, z_data) # show data along with plotted surface
# add a title for surface plot
axes.set_title('Surface plot of LN(PoF) and length & depth')
axes.set_xlabel('Depth (mm)')
axes.set_ylabel('Length (mm)')
axes.set_zlabel('LN(PoF)') # Z axis data label
plt.show()
inbuild module
#%% splprep and splev for the 2D smoothing of x and y value
def splprep_2d(x,y):
tck, u = interpolate.splprep([x,y], s = 2,
task = 0,full_output=0,quiet = 0,
k = 5, t=None)
fittedParameters = interpolate.splev(u,tck)
xnew = np.array(fittedParameters[0])
ynew = np.array(fittedParameters[1])
return xnew, ynew
xnew, ynew = splprep_2d(x,y)
splprep_2d(x,y)
s = 2 is the smoothing factor, lower would result in accurate plot, using higher smoothing factor results in smoothed curve.
K = parabolic nature of the curve, upto 5th parabolic curve can be used.
These are your smoothed parameter: xnew = np.array(fittedParameters[0]) ynew = np.array(fittedParameters[1])