I have a dataframe that looks more or less like this:
tail(df)
# A tibble: 6 x 3
GEOGCD OPER_DATE TERM_DATE
<chr> <dttm> <dttm>
1 E05006867 2009-01-01 00:00:00 2019-03-31 00:00:00
2 E05006868 2009-01-01 00:00:00 2019-03-31 00:00:00
3 E05000066 2009-01-01 00:00:00 2018-05-02 00:00:00
4 E05000067 2009-01-01 00:00:00 2018-05-02 00:00:00
5 E05000068 2009-01-01 00:00:00 2018-05-02 00:00:00
6 E05000064 2018-05-01 22:00:00 NA
str(df)
tibble [52 × 3] (S3: tbl_df/tbl/data.frame)
$ GEOGCD : chr [1:52] "E05000064" "E05000065" "E05000066" "E05000067" ...
$ OPER_DATE: POSIXct[1:52], format: "2009-01-01 00:00:00" "2009-01-01 00:00:00" "2009-01-01 00:00:00" ...
$ TERM_DATE: POSIXct[1:52], format: "2018-05-02" "2018-05-02" "2018-05-02" ...
What I want to do is to select only those who have a TERM_DATE above 2018-12-31 OR are NA. Basically something like this:
3 E05000066 2009-01-01 00:00:00 2018-05-02 00:00:00
4 E05000067 2009-01-01 00:00:00 2018-05-02 00:00:00
5 E05000068 2009-01-01 00:00:00 2018-05-02 00:00:00
6 E05000064 2018-05-01 22:00:00 NA
I've tried different things, like this:
library(lubridate)
library(dplyr)
df%>%
filter(TERM_DATE> as.Date("2018-12-31"| is.na(TERM_DATE)))
But I keep on getting errors like the following:
Error: Problem with
filter()
input..1
.
x operations are possible only for numeric, logical or complex types
ℹ Input..1
isTERM_DATE > as.Date("2018-12-31" | is.na(TERM_DATE))
.
Can any of you understand why that might be and what I should do instead?
Thanks!
Try this approach:
library(dplyr)
#Code
newdf <- df%>%
filter(TERM_DATE> as.POSIXct("2018-12-31") | is.na(TERM_DATE))
Output:
GEOGCD OPER_DATE TERM_DATE
1 E05006867 2009-01-01 00:00:00 2019-03-31
2 E05006868 2009-01-01 00:00:00 2019-03-31
3 E05000064 2018-05-01 22:00:00 <NA>
The smart solution from @StupidWolf also works:
#Code 2
df%>%
filter(TERM_DATE> as.Date("2018-12-31") | is.na(TERM_DATE))
Output:
GEOGCD OPER_DATE TERM_DATE
1 E05006867 2009-01-01 00:00:00 2019-03-31
2 E05006868 2009-01-01 00:00:00 2019-03-31
3 E05000064 2018-05-01 22:00:00 <NA>
The output expected from OP can be reached using:
#Code 3
newdf <- df%>%
filter(TERM_DATE< as.POSIXct("2018-12-31") | is.na(TERM_DATE))
Output:
GEOGCD OPER_DATE TERM_DATE
1 E05000066 2009-01-01 00:00:00 2018-05-02
2 E05000067 2009-01-01 00:00:00 2018-05-02
3 E05000068 2009-01-01 00:00:00 2018-05-02
4 E05000064 2018-05-01 22:00:00 <NA>
Or using as.Date()
. You need to change the comparison to <
.