I am searching for an equivalent function in R of the extremely convenient Stata command simulate
. The command basically allows you to declare a program
(reg_simulation
in the example below) and then invoke such a program from simulate
and store desired outputs.
Below is a Stata illustration of the usage of the simulate
program, together with my attempt to replicate it using R
.
Finally, my main question is: is this how R users will run a Montecarlo simulation? or am I missing something in terms of structure or speed bottlenecks? Thank you a lot in advance.
reg_simulation
program.clear all
*Define "reg_simulation" to be used later on by "simulate" command
program reg_simulation, rclass
*Declaring Stata version
version 13
*Droping all variables on memory
drop _all
*Set sample size (n=100)
set obs 100
*Simulate model
gen x1 = rnormal()
gen x2 = rnormal()
gen y = 1 + 0.5 * x1 + 1.5 *x2 + rnormal()
*Estimate OLS
reg y x1 x2
*Store coefficients
matrix B = e(b)
return matrix betas = B
end
reg_simulation
from simulate
command:*Seet seed
set seed 1234
*Run the actual simulation 10 times using "reg_simulation"
simulate , reps(10) nodots: reg_simulation
_b_x1 _b_x2 _b_cons
.4470155 1.50748 1.043514
.4235979 1.60144 1.048863
.5006762 1.362679 .8828927
.5319981 1.494726 1.103693
.4926634 1.476443 .8611253
.5920001 1.557737 .8391003
.5893909 1.384571 1.312495
.4721891 1.37305 1.017576
.7109139 1.47294 1.055216
.4197589 1.442816 .9404677
Using R I have managed to get the following (not an R expert tho). However, the part that worries me the most is the for-loop structure that loops over each the number of repetitions nreps
.
reg_simulation
function.#Defining a function
reg_simulation<- function(obs = 1000){
data <- data.frame(
#Generate data
x1 <-rnorm(obs, 0 , 1) ,
x2 <-rnorm(obs, 0 , 1) ,
y <- 1 + 0.5* x1 + 1.5 * x2 + rnorm(obs, 0 , 1) )
#Estimate OLS
ols <- lm(y ~ x1 + x2, data=data)
return(ols$coefficients)
}
reg_simulation
10 times using a for-loop structure:#Generate list to store results from simulation
results_list <- list()
# N repetitions
nreps <- 10
for (i in 1:nreps) {
#Set seed internally (to get different values in each run)
set.seed(i)
#Save results into list
results_list[i] <- list(reg_simulation(obs=1000))
}
#unlist results
df_results<- data.frame(t(sapply(results_list,
function(x) x[1:max(lengths(results_list))])))
df_results
.#final results
df_results
# X.Intercept. x1 x2
# 1 1.0162384 0.5490488 1.522017
# 2 1.0663263 0.4989537 1.496758
# 3 0.9862365 0.5144083 1.462388
# 4 1.0137042 0.4767466 1.551139
# 5 0.9996164 0.5020535 1.489724
# 6 1.0351182 0.4372447 1.444495
# 7 0.9975050 0.4809259 1.525741
# 8 1.0286192 0.5253288 1.491966
# 9 1.0107962 0.4659812 1.505793
# 10 0.9765663 0.5317318 1.501162
You're on the right track. Couple of hints/corrections:
<-
inside data.frame()
In R, we construct data frames using =
for internal column assignment, i.e. data.frame(x = 1:10, y = 11:20)
rather than data.frame(x <- 1:10, y <- 11:20)
.
(There's more to be said about <-
vs =
, but I don't want to distract from your main question.)
In your case, you don't actually even need to create a data frame since x1
, x2
and y
will all be recognized as "global" variables within the scope of the function. I'll post some code at the end of my answer demonstrating this.
Always try to pre-allocate the list length and type if you are going to grow a (long) for loop. Reason: That way, R knows how much memory to efficiently allocate to your object. In the case where you are only doing 10 reps, that would mean starting with something like:
results_list <- vector("list", 10)
3. Consider using lapply
instead of for
for loops have a bit of bad rep in R. (Somewhat unfairly, but that's a story for another day.) An alternative that many R users would consider is the functional programming approach offered by lapply
. I'll hold off on showing you the code for a second, but it will look very similar to a for loop. Just to note quickly, following on from point 2, that one immediate benefit is that you don't need to pre-allocate the list with lapply.
4. Run large loops in parallel
A Monte Carlo simulation is an ideal candidate for running everything in parallel, since each iteration is supposed to be independent of the others. An easy way to go parallel in R is via the future.apply
package.
Putting everything together, here's how I'd probably do your simulation. Note that this might be more "advanced" than you possibly need, but since I'm here...
library(data.table) ## optional, but what I'll use to coerce the list into a DT
library(future.apply) ## for parallel stuff
plan(multisession) ## use all available cores
obs <- 1e3
# Defining a function
reg_simulation <- function(...){
x1 <- rnorm(obs, 0 , 1)
x2 <- rnorm(obs, 0 , 1)
y <- 1 + 0.5* x1 + 1.5 * x2 + rnorm(obs, 0 , 1)
#Estimate OLS
ols <- lm(y ~ x1 + x2)
# return(ols$coefficients)
return(as.data.frame(t(ols$coefficients)))
}
# N repetitions
nreps <- 10
## Serial version
# results <- lapply(1:nreps, reg_simulation)
## Parallel version
results <- future_lapply(1:nreps, reg_simulation, future.seed = 1234L)
## Unlist / convert into a data.table
results <- rbindlist(results)