Imaging I have an array of objects, available before the aggregate
query:
const groupBy = [
{
realm: 1,
latest_timestamp: 1318874398, //Date.now() values, usually different to each other
item_id: 1234, //always the same
},
{
realm: 2,
latest_timestamp: 1312467986, //actually it's $max timestamp field from the collection
item_id: 1234,
},
{
realm: ..., //there are many of them
latest_timestamp: ...,
item_id: 1234,
},
{
realm: 10,
latest_timestamp: 1318874398, //but sometimes then can be the same
item_id: 1234,
},
]
And collection (example set available on MongoPlayground) with the following schema:
{
realm: Number,
timestamp: Number,
item_id: Number,
field: Number, //any other useless fields in this case
}
My problem is, how to $group
the values from the collection via the aggregation framework by using the already available set of data (from groupBy) ?
Okay, let skip crap ideas, like:
for (const element of groupBy) {
//array of `find` queries
}
My current working aggregation query is something like that:
//first stage
{
$match: {
"item": 1234
"realm" [1,2,3,4...,10]
}
},
{
$group: {
_id: {
realm: '$realm',
},
latest_timestamp: {
$max: '$timestamp',
},
data: {
$push: '$$ROOT',
},
},
},
{
$unwind: '$data',
},
{
$addFields: {
'data.latest_timestamp': {
$cond: {
if: {
$eq: ['$data.timestamp', '$latest_timestamp'],
},
then: '$latest_timestamp',
else: '$$REMOVE',
},
},
},
},
{
$replaceRoot: {
newRoot: '$data',
},
},
//At last, after this stages I can do useful job
but I found it a bit obsolete, and I already heard that using [.mapReduce][1]
could solve my problem a bit faster, than this query. (But official docs doesn't sound promising about it) Does it true?
As for now, I am using 4 or 5 stages, before start working with useful (for me) documents.
I have checked the $facet
stage and I found it curious for this certain case. Probably it will help me out.
After receiving documents after the necessary stages I am building a representative cluster chart, that you may also know as a heatmap
After that I was iterating each document (or array of objects) one-by-one to find their correct x and y coordinated in place which should be:
[
{
x: x (number, actual $price),
y: y (number, actual $realm),
value: price * quantity,
quantity: sum_of_quantity_on_price_level
}
]
As for now, it's old awful code with for...loop inside each other, but in the future, I will be using $facet
=> $bucket
operators for that kind of job.
So, I have found an answer to my question in another, but relevant way.
I was thinking about using $facet
operator and to be honest, it's still an option, but using it, as below is a bad practice.
//building $facet query before aggregation
const ObjectQuery = {}
for (const realm of realms) {
Object.assign(ObjectQuery, { `${realm.name}` : [ ... ] }
}
//mongoose query here
aggregation([{
$facet: ObjectQuery
},
...
])
So, I have chosen a $project
stage and $switch
operator to filter results, such as $groups do.
Also, using MapReduce
could also solve this problem, but for some reason, the official Mongo docs recommends to avoid using it, and choose aggregation: $group and $merge operators instead.