I've conducted a multinomial logistic regression analysis in Stata, followed by a Wald test, and was hoping someone could confirm that my code is doing what I think it's doing.
NB: I'm using some of Stata's example data to illustrate. The analysis I'm running for this illustration is completely meaningless, but uses the same procedure as my 'real' analysis, other than the fact that my real analysis also includes some probability weights and other covariates.
sysuse auto.dta
First, I run a multinomial logistic regression, predicting 'Repair Record' from 'Foreign' and 'Price':
mlogit rep78 i.foreign price, base(1) rrr nolog
Multinomial logistic regression Number of obs = 69
LR chi2(8) = 31.15
Prob > chi2 = 0.0001
Log likelihood = -78.116372 Pseudo R2 = 0.1662
------------------------------------------------------------------------------
rep78 | RRR Std. Err. z P>|z| [95% Conf. Interval]
-------------+----------------------------------------------------------------
1 | (base outcome)
-------------+----------------------------------------------------------------
2 |
foreign |
Foreign | .7822853 1672.371 -0.00 1.000 0 .
price | 1.000414 .0007027 0.59 0.556 .9990375 1.001792
_cons | .5000195 1.669979 -0.21 0.836 .000718 348.2204
-------------+----------------------------------------------------------------
3 |
foreign |
Foreign | 686842 1.30e+09 0.01 0.994 0 .
price | 1.000462 .0006955 0.66 0.507 .9990996 1.001826
_cons | 1.254303 4.106511 0.07 0.945 .0020494 767.6863
-------------+----------------------------------------------------------------
4 |
foreign |
Foreign | 6177800 1.17e+10 0.01 0.993 0 .
price | 1.000421 .0006999 0.60 0.547 .9990504 1.001794
_cons | .5379627 1.7848 -0.19 0.852 .0008067 358.7452
-------------+----------------------------------------------------------------
5 |
foreign |
Foreign | 2.79e+07 5.29e+10 0.01 0.993 0 .
price | 1.000386 .0007125 0.54 0.587 .9989911 1.001784
_cons | .146745 .5072292 -0.56 0.579 .0001676 128.4611
------------------------------------------------------------------------------
Second, I want to know whether the 'Foreign' coefficient for outcome category 4 is significantly different to the 'Foreign' coefficient for outcome category 5. So, I run a Wald test:
test [4]1.foreign = [5]1.foreign
( 1) [4]1.foreign - [5]1.foreign = 0
chi2( 1) = 2.72
Prob > chi2 = 0.0988
From this, I conclude that the 'Foreign' coefficient for outcome category 4 is NOT significantly different to the 'Foreign' coefficient for outcome category 5. Put more simply, the association between 'Foreign' and 'Repair 4' (compared to 'Repair 1') is equal to the association between 'Foreign' and 'Repair 5' (compared to 'Repair 1') .
Is my code for the Wald test, and my inferences about what it's doing and showing, correct?
Additionally, to what was discussed in the comments you can also perform a likelihood-ratio test using the following code.
sysuse auto.dta
qui mlogit rep78 i.foreign price, base(1) rrr nolog
estimate store unrestricted
constraint 1 [4]1.foreign = [5]1.foreign
qui mlogit rep78 i.foreign price, base(1) rrr nolog constraints(1)
estimate store restricted
lrtest unrestricted restricted
The output of the test shows the same conclusion as the Wald test, but it has better properties as explained below.
Likelihood-ratio test LR chi2(1) = 3.13
(Assumption: restricted nested in unrestricted) Prob > chi2 = 0.0771
Quoting the official documentation from mlogit
The results produced by
test
are an approximation based on the estimated covariance matrix of the coefficients. Because the probability of being uninsured is low, the log-likelihood may be nonlinear for the uninsured. Conventional statistical wisdom is not to trust the asymptotic answer under these circumstances but to perform a likelihood-ratio test instead.