Search code examples
pythonmachine-learninglightgbmshap

Use 'predict_contrib' in LightGBM to get SHAP-values


In the LightGBM documentation it is stated that one can set predict_contrib=True to predict the SHAP-values.

How do we extract the SHAP-values (apart from using the shap package)?

I have tried

model = LGBM(objective="binary",is_unbalance=True,predict_contrib=True)
model.fit(X_train,y_train)
pred_shap = opt_model.predict(X_train) #Does not get SHAP-values

which does not seem to work


Solution

  • Shap values the LGBM way with pred_contrib=True:

    from lightgbm.sklearn import LGBMClassifier
    from sklearn.datasets import load_iris
    
    X,y = load_iris(return_X_y=True)
    lgbm = LGBMClassifier()
    lgbm.fit(X,y)
    lgbm_shap = lgbm.predict(X, pred_contrib=True)
    # Shape of returned LGBM shap values: 4 features x 3 classes + 3 expected values over the training dataset
    print(lgbm_shap.shape)
    # 0th row of LGBM shap values for 0th feature
    print(lgbm_shap[0,:4])
    

    Output:

    (150, 15)
    [-0.0176954   0.50644615  5.56584344  3.43032313]
    

    Shap values from shap:

    import shap
    explainer = shap.TreeExplainer(lgbm)
    shap_values = explainer.shap_values(X)
    # num of predicted classes
    print(len(shap_values))
    # shap values for 0th class for 0th row
    print(shap_values[0][0])
    

    Output:

    3
    array([-0.0176954 ,  0.50644615,  5.56584344,  3.43032313])
    

    Looks the same to me.