I am stuck understanding the method to use. I have the following dataframe:
df = {'CODE': ['BBLGLC70M','BBLGLC70M','ZZTNRD77', 'ZZTNRD77', 'AACCBD', 'AACCBD', 'BCCDN', 'BCCDN', 'BCCDN'],
'DATE': ['16/05/2019','25/09/2019', '16/03/2020', '27/02/2020', '16/07/2020', '21/07/2020', '13/02/2020', '23/07/2020', '27/02/2020'],
'TYPE': ['PRI', 'PRI', 'PRI', 'PRI', 'PUB', 'PUB', 'PUB', 'PRI', 'PUB'],
'DESC' : ['KO', 'OK', 'KO', 'KO', 'KO', 'OK', 'KO', 'OK', 'OK']
}
df = pd.DataFrame(df)
df['DATE'] = pd.to_datetime(df['DATE'], format = '%d/%m/%Y')
df
I need to:
The expected output is the below:
The following code uses .drop_duplicates() and .duplicated() to keep or throw out rows from your dataframe that have duplicate values.
How would you calculate a month's difference? A month can be 28, 30 or 31 days. You could divide the end result by 30 and get an indication of the number of months difference. So I kept it in days for now.
import pandas as pd
df = {'CODE': ['BBLGLC70M','BBLGLC70M','ZZTNRD77', 'ZZTNRD77', 'AACCBD', 'AACCBD', 'BCCDN', 'BCCDN', 'BCCDN'],
'DATE': ['16/05/2019','25/09/2019', '16/03/2020', '27/02/2020', '16/07/2020', '21/07/2020', '13/02/2020', '23/07/2020', '27/02/2020'],
'TYPE': ['PRI', 'PRI', 'PRI', 'PRI', 'PUB', 'PUB', 'PUB', 'PRI', 'PUB'],
'DESC' : ['KO', 'OK', 'KO', 'KO', 'KO', 'OK', 'KO', 'OK', 'OK']
}
df = pd.DataFrame(df)
df['DATE'] = pd.to_datetime(df['DATE'], format = '%d/%m/%Y')
# only keep rows that have the same code and type
df = df[df.duplicated(subset=['CODE', 'TYPE'], keep=False)]
# throw out rows that have the same code and desc
df = df.drop_duplicates(subset=['CODE', 'DESC'], keep=False)
# find previous date
df = df.sort_values(by=['CODE', 'DATE'])
df['previous_date'] = df.groupby('CODE')['DATE'].transform('shift')
# drop rows that don't have a previous date
df = df.dropna()
# calculate the difference between current date and previous date
df['difference_in_dates'] = (df['DATE'] - df['previous_date'])
This results in the following df:
CODE DATE TYPE DESC previous_date difference_in_dates
AACCBD 2020-07-21 PUB OK 2020-07-16 5 days
BBLGLC70M 2019-09-25 PRI OK 2019-05-16 132 days
BCCDN 2020-02-27 PUB OK 2020-02-13 14 days