I am a big fan of Hyndman's packages, but stumbled with Box-Cox transformation.
I have a dataframe
class(chicago_sales)
[1] "tbl_ts" "tbl_df" "tbl" "data.frame"
I am trying to mutate an extra column, where the Mean_price
variable will be transformed.
foo <- chicago_sales %>%
mutate(bc = BoxCox(x = chicago_sales$Median_price, lambda =
BoxCox.lambda(chicago_sales$Median_price)))
gives me some result (probably wrong too) and cannot apply autoplot
.
I also tried to apply the code from Hyndman's book, but failed.
What am I doing wrong? Thanks!
UPDATED:
Issue, inside tsibbles, when using dplyr, you do not call chicago_sales$Median_price
, but just Median_price
. When using tsibbles I would advice using fable and fabletools, but if you are using forecast, it should work like this:
library(tsibble)
library(dplyr)
library(forecast)
pedestrian %>%
mutate(bc = BoxCox(Count, BoxCox.lambda(Count)))
# A tsibble: 66,037 x 6 [1h] <Australia/Melbourne>
# Key: Sensor [4]
Sensor Date_Time Date Time Count bc
<chr> <dttm> <date> <int> <int> <dbl>
1 Birrarung Marr 2015-01-01 00:00:00 2015-01-01 0 1630 11.3
2 Birrarung Marr 2015-01-01 01:00:00 2015-01-01 1 826 9.87
3 Birrarung Marr 2015-01-01 02:00:00 2015-01-01 2 567 9.10
4 Birrarung Marr 2015-01-01 03:00:00 2015-01-01 3 264 7.65
5 Birrarung Marr 2015-01-01 04:00:00 2015-01-01 4 139 6.52
6 Birrarung Marr 2015-01-01 05:00:00 2015-01-01 5 77 5.54
7 Birrarung Marr 2015-01-01 06:00:00 2015-01-01 6 44 4.67
8 Birrarung Marr 2015-01-01 07:00:00 2015-01-01 7 56 5.04
9 Birrarung Marr 2015-01-01 08:00:00 2015-01-01 8 113 6.17
10 Birrarung Marr 2015-01-01 09:00:00 2015-01-01 9 166 6.82
# ... with 66,027 more rows
I used a built in dataset from the tsibble
package as you did not provide a dput of chicago_sales
.