I am trying to compute a series, and I am running into an issue that I don't know why is occurring.
"RuntimeWarning: divide by zero encountered in double_scalars"
When I checked the code, it didn't seem to have any singularities, so I am confused. Here is the code currently(log stands for natural logarithm)(edit: extending code if that helps):
from numpy import pi, log
#Create functions to calculate the sums
def phi(z: int):
k = 0
phi = 0
#Loop through 1000 times to try to approximate the series value as if it went to infinity
while k <= 100:
phi += ((1/(k+1)) - (1/(k+(2*z))))
k += 1
return phi
def psi(z: int):
psi = 0
k = 1
while k <= 101:
psi += ((log(k))/( k**(2*z)))
k += 1
return psi
def sig(z: int):
sig = 0
k = 1
while k <= 101:
sig += ((log(k))**2)/(k^(2*z))
k += 1
return sig
def beta(z: int):
beta = 0
k = 1
while k <= 101:
beta += (1/(((2*z)+k)^2))
k += 1
return beta
#Create the formula to approximate the value. For higher accuracy, either calculate more derivatives of Bernoulli numbers or increase the boundry of k.
def Bern(z :int):
#Define Euler–Mascheroni constant
c = 0.577215664901532860606512
#Begin computations (only approximation)
B = (pi/6) * (phi(1) - c - 2 * log(2 * pi) - 1) - z * ((pi/6) * ((phi(1)- c - (2 * log(2 * pi)) - 1) * (phi(1) - c) + beta(1) - 2 * psi(1)) - 2 * (psi(1) * (phi(1) - c) + sig(1) + 2 * psi(1) * log(2 * pi)))
#output
return B
A = int(input("Choose any value: "))
print("The answer is", Bern(A + 1))
Any help would be much appreciated.
are you sure you need a ^
bitwise exclusive or operator instead of **
? I've tried to run your code with input parameter z = 1. And on a second iteration the result of k^(2*z)
was equal to 0, so where is from zero division error come from (2^2*1 = 0).