Search code examples
c++tcpns-3802.11p

Extract the information regarding rts, cts and ack from xml file generated with flow monitor in ns3


While doing network simulation using ns-3 for IEEE802.11, there is a pcap file generated. I am able to filter all the information regarding rts, cts and ack from that pcap file using WireShark. But I need to extract the same information using flow monitor module (from the XML file generated). But I couldn't find any way for that. Is it possible to get that info using flow monitor or not?

My code is similar to the file ns-allinone-3.31/ns-3.31/examples/wireless/wifi-tcp.cc but enabled rts/cts and added flow monitor.

#include "ns3/command-line.h"
#include "ns3/config.h"
#include "ns3/string.h"
#include "ns3/log.h"
#include "ns3/yans-wifi-helper.h"
#include "ns3/ssid.h"
#include "ns3/mobility-helper.h"
#include "ns3/on-off-helper.h"
#include "ns3/yans-wifi-channel.h"
#include "ns3/mobility-model.h"
#include "ns3/packet-sink.h"
#include "ns3/packet-sink-helper.h"
#include "ns3/tcp-westwood.h"
#include "ns3/internet-stack-helper.h"
#include "ns3/ipv4-address-helper.h"
#include "ns3/ipv4-global-routing-helper.h"
#include "ns3/flow-monitor.h"
#include "ns3/flow-monitor-module.h"


NS_LOG_COMPONENT_DEFINE ("wifi-tcp");

using namespace ns3;

Ptr<PacketSink> sink;                         /* Pointer to the packet sink application */
uint64_t lastTotalRx = 0;                     /* The value of the last total received bytes */

void
CalculateThroughput ()
{
  Time now = Simulator::Now ();                                         /* Return the simulator's virtual time. */
  double cur = (sink->GetTotalRx () - lastTotalRx) * (double) 8 / 1e5;     /* Convert Application RX Packets to MBits. */
  std::cout << now.GetSeconds () << "s: \t" << cur << " Mbit/s" << std::endl;
  lastTotalRx = sink->GetTotalRx ();
  Simulator::Schedule (MilliSeconds (100), &CalculateThroughput);
}

int
main (int argc, char *argv[])
{
  uint32_t payloadSize = 1472;                       /* Transport layer payload size in bytes. */
  std::string dataRate = "100Mbps";                  /* Application layer datarate. */
  std::string tcpVariant = "TcpNewReno";             /* TCP variant type. */
  std::string phyRate = "HtMcs7";                    /* Physical layer bitrate. */
  double simulationTime = 10;                        /* Simulation time in seconds. */
  bool pcapTracing = true;                          /* PCAP Tracing is enabled or not. */

  /* Command line argument parser setup. */
  CommandLine cmd (__FILE__);
  cmd.AddValue ("payloadSize", "Payload size in bytes", payloadSize);
  cmd.AddValue ("dataRate", "Application data ate", dataRate);
  cmd.AddValue ("tcpVariant", "Transport protocol to use: TcpNewReno, "
                "TcpHybla, TcpHighSpeed, TcpHtcp, TcpVegas, TcpScalable, TcpVeno, "
                "TcpBic, TcpYeah, TcpIllinois, TcpWestwood, TcpWestwoodPlus, TcpLedbat ", tcpVariant);
  cmd.AddValue ("phyRate", "Physical layer bitrate", phyRate);
  cmd.AddValue ("simulationTime", "Simulation time in seconds", simulationTime);
  cmd.AddValue ("pcap", "Enable/disable PCAP Tracing", pcapTracing);
  cmd.Parse (argc, argv);

  tcpVariant = std::string ("ns3::") + tcpVariant;
  // Select TCP variant
  if (tcpVariant.compare ("ns3::TcpWestwoodPlus") == 0)
    {
      // TcpWestwoodPlus is not an actual TypeId name; we need TcpWestwood here
      Config::SetDefault ("ns3::TcpL4Protocol::SocketType", TypeIdValue (TcpWestwood::GetTypeId ()));
      // the default protocol type in ns3::TcpWestwood is WESTWOOD
      Config::SetDefault ("ns3::TcpWestwood::ProtocolType", EnumValue (TcpWestwood::WESTWOODPLUS));
    }
  else
    {
      TypeId tcpTid;
      NS_ABORT_MSG_UNLESS (TypeId::LookupByNameFailSafe (tcpVariant, &tcpTid), "TypeId " << tcpVariant << " not found");
      Config::SetDefault ("ns3::TcpL4Protocol::SocketType", TypeIdValue (TypeId::LookupByName (tcpVariant)));
    }

  /* Configure TCP Options */
  std::string RtsCtsThreshold="256";
  std::string FragmentationThreshold="1000";
  Config::SetDefault("ns3::WifiRemoteStationManager::RtsCtsThreshold",StringValue(RtsCtsThreshold));
  Config::SetDefault("ns3::WifiRemoteStationManager::FragmentationThreshold",StringValue(FragmentationThreshold));

  Config::SetDefault ("ns3::TcpSocket::SegmentSize", UintegerValue (payloadSize));

  WifiMacHelper wifiMac;
  WifiHelper wifiHelper;
  wifiHelper.SetStandard (WIFI_PHY_STANDARD_80211n_5GHZ);

  /* Set up Legacy Channel */
  YansWifiChannelHelper wifiChannel;
  wifiChannel.SetPropagationDelay ("ns3::ConstantSpeedPropagationDelayModel");
  wifiChannel.AddPropagationLoss ("ns3::FriisPropagationLossModel", "Frequency", DoubleValue (5e9));

  /* Setup Physical Layer */
  YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();
  wifiPhy.SetChannel (wifiChannel.Create ());
  wifiPhy.SetErrorRateModel ("ns3::YansErrorRateModel");
  wifiHelper.SetRemoteStationManager ("ns3::ConstantRateWifiManager",
                                      "DataMode", StringValue (phyRate),
                                      "ControlMode", StringValue ("HtMcs0"));

  NodeContainer networkNodes;
  networkNodes.Create (2);
  Ptr<Node> apWifiNode = networkNodes.Get (0);
  Ptr<Node> staWifiNode = networkNodes.Get (1);

  /* Configure AP */
  Ssid ssid = Ssid ("network");
  wifiMac.SetType ("ns3::ApWifiMac",
                   "Ssid", SsidValue (ssid));

  NetDeviceContainer apDevice;
  apDevice = wifiHelper.Install (wifiPhy, wifiMac, apWifiNode);

  /* Configure STA */
  wifiMac.SetType ("ns3::StaWifiMac",
                   "Ssid", SsidValue (ssid));

  NetDeviceContainer staDevices;
  staDevices = wifiHelper.Install (wifiPhy, wifiMac, staWifiNode);

  /* Mobility model */
  MobilityHelper mobility;
  Ptr<ListPositionAllocator> positionAlloc = CreateObject<ListPositionAllocator> ();
  positionAlloc->Add (Vector (0.0, 0.0, 0.0));
  positionAlloc->Add (Vector (1.0, 1.0, 0.0));

  mobility.SetPositionAllocator (positionAlloc);
  mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
  mobility.Install (apWifiNode);
  mobility.Install (staWifiNode);

  /* Internet stack */
  InternetStackHelper stack;
  stack.Install (networkNodes);

  Ipv4AddressHelper address;
  address.SetBase ("10.0.0.0", "255.255.255.0");
  Ipv4InterfaceContainer apInterface;
  apInterface = address.Assign (apDevice);
  Ipv4InterfaceContainer staInterface;
  staInterface = address.Assign (staDevices);

  /* Populate routing table */
  Ipv4GlobalRoutingHelper::PopulateRoutingTables ();

  /* Install TCP Receiver on the access point */
  PacketSinkHelper sinkHelper ("ns3::TcpSocketFactory", InetSocketAddress (Ipv4Address::GetAny (), 9));
  ApplicationContainer sinkApp = sinkHelper.Install (apWifiNode);
  sink = StaticCast<PacketSink> (sinkApp.Get (0));

  /* Install TCP/UDP Transmitter on the station */
  OnOffHelper server ("ns3::TcpSocketFactory", (InetSocketAddress (apInterface.GetAddress (0), 9)));
  server.SetAttribute ("PacketSize", UintegerValue (payloadSize));
  server.SetAttribute ("OnTime", StringValue ("ns3::ConstantRandomVariable[Constant=1]"));
  server.SetAttribute ("OffTime", StringValue ("ns3::ConstantRandomVariable[Constant=0]"));
  server.SetAttribute ("DataRate", DataRateValue (DataRate (dataRate)));
  ApplicationContainer serverApp = server.Install (staWifiNode);

  // Flow monitor
  Ptr<FlowMonitor> flowMonitor;
  FlowMonitorHelper flowHelper;
  flowMonitor = flowHelper.InstallAll();

  /* Start Applications */
  sinkApp.Start (Seconds (0.0));
  serverApp.Start (Seconds (1.0));
  Simulator::Schedule (Seconds (1.1), &CalculateThroughput);

  /* Enable Traces */
  if (pcapTracing)
    {
      wifiPhy.SetPcapDataLinkType (WifiPhyHelper::DLT_IEEE802_11_RADIO);
      wifiPhy.EnablePcap ("AccessPoint", apDevice);
      wifiPhy.EnablePcap ("Station", staDevices);
    }

  /* Start Simulation */
  Simulator::Stop (Seconds (simulationTime + 1));
  Simulator::Run ();

  flowMonitor->SerializeToXmlFile("1.xml", true, true);

  double averageThroughput = ((sink->GetTotalRx () * 8) / (1e6 * simulationTime));

  Simulator::Destroy ();

  if (averageThroughput < 50)
    {
      NS_LOG_ERROR ("Obtained throughput is not in the expected boundaries!");
      exit (1);
    }
  std::cout << "\nAverage throughput: " << averageThroughput << " Mbit/s" << std::endl;
  return 0;
}

Thanks in advance :)


Solution

  • 802.11 pcaps that include control frames (rts/cts/ack) are link layer. Flow monitor is meant for transport layer, so you can't really get that data with it.

    You can use wireshark/tshark to extract the data you want from the pcaps. Or maybe try pyshark to do it from a python script.