Apologies if this questions looks familiar, I had posted a more broader description of the problem earlier but I have since deleted it as I have made some progress in my investigation and can narrow down to more specific questions.
Context:
make_image_classifier
.make_image_classifier
correctly, it produces a model that expects a 4 dimension input. We are dealing with images so beyond width, height, and channels I don't know what this 4th dimension is. This lack of understanding may be the source of my problem.Questions:
Q1: Why does the model produced by make_image_classifier
expect a 4 dimension input? There is height, width and channel but what's the 4th one?
When I do the following with the C API to run the model with my image input:
int inputDims[3] = {224, 224, 3};
tflStatus = TfLiteInterpreterResizeInputTensor(interpreter, 0, inputDims, 3);
I get:
ERROR: tensorflow/lite/kernels/conv.cc:329 input->dims->size != 4 (3 != 4)
ERROR: Node number 2 (CONV_2D) failed to prepare.
So I end up doing:
int inputDims[4] = {1, 224, 224, 3};
tflStatus = TfLiteInterpreterResizeInputTensor(interpreter, 0, inputDims, 4);
From what I can tell, the first dimension size is for the batch size in case I want to process more than one image. Is this correct?
Q2: Should I be structuring my data input in the same dimension structure used when invoking TfLiteInterpreterResizeInputTensor
? I get the error in question with this image RGB input buffer:
// RGB range is 0-255. Scale it to 0-1.
for(int i = 0; i < imageSize; i++){
imageDataBuffer[i] = (float)pImage[i] / 255.0;
}
I also get an error when building an input that mimics the input dimension given to TfLiteInterpreterResizeInputTensor
, but this seems silly:
float imageData[1][224][224][3];
int j = 0;
for(int h = 0; h < 224; h++){
for(int w = 0; w < 224; w++){
imageData[0][h][w][0] = (float)pImage[j] * (1.0 / 255.0);
imageData[0][h][w][1] = (float)pImage[j+1] * (1.0 / 255.0);
imageData[0][h][w][2] = (float)pImage[j+2] * (1.0 / 255.0);
j = j + 3;
}
}
That last input structure is similar to the input structure used in the Python label_image.py
when it does this:
input_data = np.expand_dims(img, axis=0)
Q3: What's wrong with my input buffer that makes TfLiteTensorCopyFromBuffer
return an error code?
Thank you!
Full Code:
#include "tensorflow/lite/c/c_api.h"
#include "tensorflow/lite/c/c_api_experimental.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/ujpeg.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// Dispose of the model and interpreter objects.
int disposeTfLiteObjects(TfLiteModel* pModel, TfLiteInterpreter* pInterpreter)
{
if(pModel != NULL)
{
TfLiteModelDelete(pModel);
}
if(pInterpreter)
{
TfLiteInterpreterDelete(pInterpreter);
}
}
// The main function.
int main(void)
{
TfLiteStatus tflStatus;
// Create JPEG image object.
ujImage img = ujCreate();
// Decode the JPEG file.
ujDecodeFile(img, "image_224x224.jpeg");
// Check if decoding was successful.
if(ujIsValid(img) == 0){
return 1;
}
// There will always be 3 channels.
int channel = 3;
// Height will always be 224, no need for resizing.
int height = ujGetHeight(img);
// Width will always be 224, no need for resizing.
int width = ujGetWidth(img);
// The image size is channel * height * width.
int imageSize = ujGetImageSize(img);
// Fetch RGB data from the decoded JPEG image input file.
uint8_t* pImage = (uint8_t*)ujGetImage(img, NULL);
// The array that will collect the JPEG RGB values.
float imageDataBuffer[imageSize];
// RGB range is 0-255. Scale it to 0-1.
int j=0;
for(int i = 0; i < imageSize; i++){
imageDataBuffer[i] = (float)pImage[i] / 255.0;
}
// Load model.
TfLiteModel* model = TfLiteModelCreateFromFile("model.tflite");
// Create the interpreter.
TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, NULL);
// Allocate tensors.
tflStatus = TfLiteInterpreterAllocateTensors(interpreter);
// Log and exit in case of error.
if(tflStatus != kTfLiteOk)
{
printf("Error allocating tensors.\n");
disposeTfLiteObjects(model, interpreter);
return 1;
}
int inputDims[4] = {1, 224, 224, 3};
tflStatus = TfLiteInterpreterResizeInputTensor(interpreter, 0, inputDims, 4);
// Log and exit in case of error.
if(tflStatus != kTfLiteOk)
{
printf("Error resizing tensor.\n");
disposeTfLiteObjects(model, interpreter);
return 1;
}
tflStatus = TfLiteInterpreterAllocateTensors(interpreter);
// Log and exit in case of error.
if(tflStatus != kTfLiteOk)
{
printf("Error allocating tensors after resize.\n");
disposeTfLiteObjects(model, interpreter);
return 1;
}
// The input tensor.
TfLiteTensor* inputTensor = TfLiteInterpreterGetInputTensor(interpreter, 0);
// Copy the JPEG image data into into the input tensor.
tflStatus = TfLiteTensorCopyFromBuffer(inputTensor, imageDataBuffer, imageSize);
// Log and exit in case of error.
// FIXME: Error occurs here.
if(tflStatus != kTfLiteOk)
{
printf("Error copying input from buffer.\n");
disposeTfLiteObjects(model, interpreter);
return 1;
}
// Invoke interpreter.
tflStatus = TfLiteInterpreterInvoke(interpreter);
// Log and exit in case of error.
if(tflStatus != kTfLiteOk)
{
printf("Error invoking interpreter.\n");
disposeTfLiteObjects(model, interpreter);
return 1;
}
// Extract the output tensor data.
const TfLiteTensor* outputTensor = TfLiteInterpreterGetOutputTensor(interpreter, 0);
// There are three possible labels. Size the output accordingly.
float output[3];
tflStatus = TfLiteTensorCopyToBuffer(outputTensor, output, 3 * sizeof(float));
// Log and exit in case of error.
if(tflStatus != kTfLiteOk)
{
printf("Error copying output to buffer.\n");
disposeTfLiteObjects(model, interpreter);
return 1;
}
// Print out classification result.
printf("Confidences: %f, %f, %f.\n", output[0], output[1], output[2]);
// Dispose of the TensorFlow objects.
disposeTfLiteObjects(model, interpreter);
// Dispoice of the image object.
ujFree(img);
return 0;
}
EDIT #1: Ok, so inside TfLiteTensorCopyFromBuffer
:
TfLiteStatus TfLiteTensorCopyFromBuffer(TfLiteTensor* tensor,
const void* input_data,
size_t input_data_size) {
if (tensor->bytes != input_data_size) {
return kTfLiteError;
}
memcpy(tensor->data.raw, input_data, input_data_size);
return kTfLiteOk;
}
My input_data_size
value is 150,528 (3 channels x 224 pixel height x 224 pixel width) but tensor->bytes
is 602,112 (3 channels x 448 pixel height x 224 pixel 448, I assume?). I don't understand this discrepancy especially since I invoked TfLiteInterpreterResizeInputTensor
with {1, 224, 224, 3}
.
EDIT #2: I believe I have found my answer here. Will resolve this post once confirmed.
The solution I linked to on EDIT #2 was the answer. In the end, I just had to replace:
TfLiteTensorCopyFromBuffer(inputTensor, imageDataBuffer, imageSize);
with:
TfLiteTensorCopyFromBuffer(inputTensor, imageDataBuffer, imageSize * sizeof(float));
Cheers!