Search code examples
rggplot2r-plotlyggplotly

Create a ggplotly object with a subtitle


I'm plotting a Scatterplot with ggplot() as follows:

library(data.table)
library(plotly)
library(ggplot2)
library(lubridate)

dt.allData <- data.table(date = seq(as.Date('2020-01-01'), by = '1 day', length.out = 365),
                         DE = rnorm(365, 4, 1), Austria = rnorm(365, 10, 2), 
                         Czechia = rnorm(365, 1, 2), check.names = FALSE)

## Calculate Pearson correlation coefficient: ##
corrCoeff <- cor(dt.allData$Austria, dt.allData$DE,  method = "pearson", use = "complete.obs")
corrCoeff <- round(corrCoeff, digits = 2)

## Linear regression function extraction by creating linear model: ##
regLine <- lm(DE ~ Austria, data = dt.allData)

## Extract k and d values for the linear function f(x) = kx+d: ##
k <- round(regLine$coef[2], digits = 5)
d <- round(regLine$coef[1], digits = 2)
linRegFunction <- paste0("y = ", d, " + (", k, ")x")

## PLOT: ##
p1 <- ggplot(data = dt.allData, aes(x = Austria, y = DE, 
                                    text = paste("Date: ", date, '\n',
                                                 "Austria: ", Austria, "MWh/h", '\n',
                                                 "DE: ", DE, "\u20ac/MWh"),
                                    group = 1)
      ) +
      geom_point(aes(color = ifelse(date >= now()-weeks(5), "#419F44", "#F07D00"))) +
      scale_color_manual(values = c("#F07D00", "#419F44")) +
      geom_smooth(method = "lm", se = FALSE, color = "#007d3c") +
      annotate("text", x = 10, y = 10,
               label = paste("\u03c1 =", corrCoeff, '\n',
                             linRegFunction), parse = TRUE) +
      theme_classic() +
      theme(legend.position = "none") +
      theme(panel.background = element_blank()) +
      xlab("Austria") +
      ylab("DE")+
      ggtitle("DE vs Austria") +
      theme(plot.title = element_text(hjust = 0.5, face = "bold"))

# Correlation plot converting from ggplot to plotly: #
plot <- plotly::ggplotly(p1, tooltip = "text")

which gives the following plot here:

enter image description here

I use annotate() to represent the correlation coefficient and the regression function. I define the x and y coordinates manually so that the text output is displayed in the middle at the top. Since I have some of such data tables dt.allData that have different axis scalings, I would like to define in the plot that the text should always be displayed in the middle at the top, depending on the axis scaling without defining x and y coordinate manually before.


Solution

  • I'd suggest using ggtitle and hjust = 0.5:

    Edit: using plotly::layout and a span tag to create the title:

    library(data.table)
    library(ggplot2)
    library(plotly)
    library(lubridate)
    
    dt.allData <- data.table(date = seq(as.Date('2020-01-01'), by = '1 day', length.out = 365),
                             DE = rnorm(365, 4, 1), Austria = rnorm(365, 10, 2), 
                             Czechia = rnorm(365, 1, 2), check.names = FALSE)
    
    ## Calculate Pearson correlation coefficient: ##
    corrCoeff <- cor(dt.allData$Austria, dt.allData$DE,  method = "pearson", use = "complete.obs")
    corrCoeff <- round(corrCoeff, digits = 2)
    
    ## Linear regression function extraction by creating linear model: ##
    regLine <- lm(DE ~ Austria, data = dt.allData)
    
    ## Extract k and d values for the linear function f(x) = kx+d: ##
    k <- round(regLine$coef[2], digits = 5)
    d <- round(regLine$coef[1], digits = 2)
    linRegFunction <- paste0("y = ", d, " + (", k, ")x")
    
    ## PLOT: ##
    p1 <- ggplot(data = dt.allData, aes(x = Austria, y = DE, 
                                        text = paste("Date: ", date, '\n',
                                                     "Austria: ", Austria, "MWh/h", '\n',
                                                     "DE: ", DE, "\u20ac/MWh"),
                                        group = 1)
    ) +
      geom_point(aes(color = ifelse(date >= now()-weeks(5), "#419F44", "#F07D00"))) +
      scale_color_manual(values = c("#F07D00", "#419F44")) +
      geom_smooth(method = "lm", formula = 'y ~ x', se = FALSE, color = "#007d3c") +
      # ggtitle(label = paste("My pretty useful title", '\n', "\u03c1 =", corrCoeff, '\n', linRegFunction)) +
      theme_classic() +
      theme(plot.title = element_text(hjust = 0.5)) +
      theme(legend.position = "none") +
      theme(panel.background = element_blank()) +
      xlab("Austria") +
      ylab("DE")
    
    # Correlation plot converting from ggplot to plotly: #
    # using span tag (directly in control of font-size):
    span_plot <- plotly::ggplotly(p1, tooltip = "text") %>% layout(
        title = paste(
          '<b>My pretty useful title</b>',
          '<br><span style="font-size: 15px;">',
          '\u03c1 =<i>',
          corrCoeff,
          '</i><br>',
          linRegFunction,
          '</span>'
        ),
        margin = list(t = 100)
      )
    span_plot
    

    Edit: added the sup alternative as per this answer

    # using sup tag:
    sup_plot <- plotly::ggplotly(p1, tooltip = "text") %>% layout(
        title = paste(
          '<b>My pretty useful title</b>',
          '<br><sup>',
          "\u03c1 =<i>",
          corrCoeff,
          '</i><br>',
          linRegFunction,
          '</sup>'
        ),
        margin = list(t = 100)
      )
    sup_plot
    

    result

    Here you can find some related information in the plotly docs.