Search code examples
rdplyrzoorollapply

how to make a rolling sum (or rolling average) with multiple variables


I'm new using the zoo package, so maybe it's an easy question. I have the following data frame (df):

library(lubridate)
library(zoo)
library(dplyr)

Date <- c("2010-01-28", "2010-01-28", "2010-02-28", 
           "2010-02-28", "2010-03-28", "2010-03-28",
           "2010-04-28", "2010-04-28")

Date <- as_date(Date)
Amount <- 1:8
Prod <- c("Corn", "Potato","Corn", "Potato","Corn", "Potato","Corn", "Potato")
df <- data.frame(Date, Prod, Amount)
print(df)

 Date         Prod    Amount
 2010-01-28   Corn      1
 2010-01-28 Potato      2
 2010-02-28   Corn      3
 2010-02-28 Potato      4
 2010-03-28   Corn      5
 2010-03-28 Potato      6
 2010-04-28   Corn      7
 2010-04-28 Potato      8

What I want is to calculate the rolling sum for each variable, with a "window" of 3 days, and then make a new data frame, equal as follows:

 Date        Prod     Amount
 2010-03-28   Corn      9
 2010-03-28 Potato      12
 2010-04-28   Corn      15
 2010-04-28 Potato      18

Probably rollapply() and dplyr could do the job, but I don't know how to resolve this. I appreciate it if someone can help :)


Solution

  • I did it using dplyr::lag()

    library(dplyr)
    library(tibble)
    
    ## Data
    data <- tribble(
      ~Date,        ~Prod,    ~Amount,
      "2010-01-28",   "Corn",      1,
      "2010-01-28", "Potato",      2,
      "2010-02-28",   "Corn",      3,
      "2010-02-28", "Potato",      4,
      "2010-03-28",   "Corn",      5,
      "2010-03-28", "Potato",      6,
      "2010-04-28",   "Corn",      7,
      "2010-04-28", "Potato",      8
    )
    
    # Code
    
    data %>% 
      group_by(Prod) %>% 
      mutate(cum_amount = Amount + lag(Amount, 1) + lag(Amount, 2)) %>% 
      filter(!is.na(cum_amount))
    
    
    # A tibble: 4 x 4
    # Groups:   Prod [2]
      Date       Prod   Amount cum_amount
      <chr>      <chr>   <dbl>      <dbl>
    1 2010-03-28 Corn        5          9
    2 2010-03-28 Potato      6         12
    3 2010-04-28 Corn        7         15
    4 2010-04-28 Potato      8         18
    

    Update in order to your comment

    data %>% 
      group_by(Prod) %>% 
      mutate(cum_amount = c(rep(NA, 2), zoo::rollsum(Amount, 3))) %>% 
      filter(!is.na(cum_amount))
    

    PS: Remember to include the R tag in your questions