I want to fill numbers in column flag
, based on the value in column KEY
.
cumcount()
to fill incremental numbers, I want to fill same number for every two rows if the value in column KEY
stays same.KEY
changes, the number filled changes also.Here is the example, df1 is what I want from df0.
df0 = pd.DataFrame({'KEY':['0','0','0','0','1','1','1','2','2','2','2','2','3','3','3','3','3','3','4','5','6']})
df1 = pd.DataFrame({'KEY':['0','0','0','0','1','1','1','2','2','2','2','2','3','3','3','3','3','3','4','5','6'],
'flag':['0','0','1','1','2','2','3','4','4','5','5','6','7','7','8','8','9','9','10','11','12']})
You want to get the cumcount and add one. Then use %2
to differentiate between odd or even rows. Then, take the cumulative sum and subtract 1 to start counting from zero.
You can use:
df0['flag'] = ((df0.groupby('KEY').cumcount() + 1) % 2).cumsum() - 1
df0
Out[1]:
KEY flag
0 0 0
1 0 0
2 0 1
3 0 1
4 1 2
5 1 2
6 1 3
7 2 4
8 2 4
9 2 5
10 2 5
11 2 6
12 3 7
13 3 7
14 3 8
15 3 8
16 3 9
17 3 9
18 4 10
19 5 11
20 6 12