I would like to treat the time overlap between some days. As you can see in my df, I have a begin on the date 2019-10-25 and the end at 2019-10-27:
begin end info
2019-10-25 10:39:58.352073 2019-10-25 10:40:06.266782 toto
2019-10-25 16:35:22.485574 2019-10-27 09:50:31.713179 tata <------ HERE
2019-10-27 09:50:31.713179 2019-10-27 09:50:31.713192 titi
2019-10-28 14:04:33.095633 2019-10-28 14:05:07.639344 tete
I would like to add as many time slots (date 00:00:00; date 23:59:59.9) as there are between these two dates and copy the data info, like these:
2019-10-25 16:35:22.485574 2019-10-25 23:59:59.999999 tata
2019-10-26 00:00:00.000000 2019-10-26 23:59:59.999999 tata
2019-10-27 00:00:00.000000 2019-10-27 09:50:31.713179 tata
The final expected result:
begin end info
2019-10-25 10:39:58.352073 2019-10-25 10:40:06.266782 toto
2019-10-25 16:35:22.485574 2019-10-25 23:59:59.999999 tata
2019-10-26 00:00:00.000000 2019-10-26 23:59:59.999999 tata
2019-10-27 00:00:00.000000 2019-10-27 09:50:31.713179 tata
2019-10-27 09:50:31.713179 2019-10-27 09:50:31.713192 titi
2019-10-28 14:04:33.095633 2019-10-28 14:05:07.639344 tete
But I don't know how implement the date_range, fill info, add the specific number of rows.
Thanks your time
Assuming begin
and end
are already of Timestamp
type:
# Generate a series of Timedeltas for each row
n = (
(df['end'].dt.normalize() - df['begin'].dt.normalize())
.apply(lambda d: [pd.Timedelta(days=i) for i in range(d.days+1)])
.explode()
).rename('n')
df = df.join(n)
# Adjust the begin and end of each row
adjusted_begin = np.max([
df['begin'],
df['begin'].dt.normalize() + df['n']
], axis=0)
adjusted_end = np.min([
df['end'],
pd.Series(adjusted_begin).dt.normalize() + pd.Timedelta(days=1, milliseconds=-100)
], axis=0)
# Final assembly
df = df.assign(begin_=adjusted_begin, end_=adjusted_end)
Result:
begin end info n begin_ end_
0 2019-10-25 10:39:58.352073 2019-10-25 10:40:06.266782 toto 0 days 2019-10-25 10:39:58.352073 2019-10-25 10:40:06.266782
1 2019-10-25 16:35:22.485574 2019-10-27 09:50:31.713179 tata 0 days 2019-10-25 16:35:22.485574 2019-10-25 23:59:59.900000
1 2019-10-25 16:35:22.485574 2019-10-27 09:50:31.713179 tata 1 days 2019-10-26 00:00:00.000000 2019-10-26 23:59:59.900000
1 2019-10-25 16:35:22.485574 2019-10-27 09:50:31.713179 tata 2 days 2019-10-27 00:00:00.000000 2019-10-27 09:50:31.713179
2 2019-10-27 09:50:31.713179 2019-10-27 09:50:31.713192 titi 0 days 2019-10-27 09:50:31.713179 2019-10-27 09:50:31.713192
3 2019-10-28 14:04:33.095633 2019-10-28 14:05:07.639344 tete 0 days 2019-10-28 14:04:33.095633 2019-10-28 14:05:07.639344
Trim off the columns you don't need