Search code examples
pythonpandasmachine-learningaif360

Calculate group fairness metrics with AIF360


I want to calculate group fairness metrics using AIF360. This is a sample dataset and model, in which gender is the protected attribute and income is the target.

import pandas as pd
from sklearn.svm import SVC
from aif360.sklearn import metrics

df = pd.DataFrame({'gender': [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],
                  'experience': [0, 0.1, 0.2, 0.4, 0.5, 0.6, 0, 0.1, 0.2, 0.4, 0.5, 0.6],
                  'income': [0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1]})

clf = SVC(random_state=0).fit(df[['gender', 'experience']], df['income'])

y_pred = clf.predict(df[['gender', 'experience']])

metrics.statistical_parity_difference(y_true=df['income'], y_pred=y_pred, prot_attr='gender', priv_group=1, pos_label=1)

It throws out:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-7-609692e52b2a> in <module>
     11 y_pred = clf.predict(X)
     12 
---> 13 metrics.statistical_parity_difference(y_true=df['income'], y_pred=y_pred, prot_attr='gender', priv_group=1, pos_label=1)

TypeError: statistical_parity_difference() got an unexpected keyword argument 'y_true'

Similar error for disparate_impact_ratio. It seems the data needs to be entered differently, but I have not been able to figure out how.


Solution

  • This can be done by transforming the data to a StandardDataset followed by calling the fair_metrics function below:

    from aif360.datasets import StandardDataset
    from aif360.metrics import BinaryLabelDatasetMetric, ClassificationMetric
    
    dataset = StandardDataset(df, 
                              label_name='income', 
                              favorable_classes=[1], 
                              protected_attribute_names=['gender'], 
                              privileged_classes=[[1]])
    
    def fair_metrics(dataset, y_pred):
        dataset_pred = dataset.copy()
        dataset_pred.labels = y_pred
            
        attr = dataset_pred.protected_attribute_names[0]
        
        idx = dataset_pred.protected_attribute_names.index(attr)
        privileged_groups =  [{attr:dataset_pred.privileged_protected_attributes[idx][0]}] 
        unprivileged_groups = [{attr:dataset_pred.unprivileged_protected_attributes[idx][0]}] 
    
        classified_metric = ClassificationMetric(dataset, dataset_pred, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups)
    
        metric_pred = BinaryLabelDatasetMetric(dataset_pred, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups)
    
        result = {'statistical_parity_difference': metric_pred.statistical_parity_difference(),
                 'disparate_impact': metric_pred.disparate_impact(),
                 'equal_opportunity_difference': classified_metric.equal_opportunity_difference()}
            
        return result
    
    
    fair_metrics(dataset, y_pred)
    

    which returns the correct results (image ref):

    {'statistical_parity_difference': -0.6666666666666667,
     'disparate_impact': 0.3333333333333333,
     'equal_opportunity_difference': 0.0}
    

    enter image description here