I have two pandas dataframes. The first one contains some data I want to multiplicate with the second dataframe which is a reference table.
So in my example I want to get a new column in df1 for every column in my reference table - but also add up every row in that column. Like this (Index 205368421 with R21 17): (1205 * 0.526499) + (7562* 0.003115) + (1332* 0.000267) = 658
In Excel VBA I iterated through both tables and did it that way - but it took very long. I've read that pandas is way better for this without iterating.
df1 = pd.DataFrame({'Index': ['205368421', '206321177','202574796','200212811', '204376114'],
'L1.09A': [1205,1253,1852,1452,1653],
'L1.10A': [7562,7400,5700,4586,4393],
'L1.10C': [1332, 0, 700,1180,290]})
df2 = pd.DataFrame({'WorkerID': ['L1.09A', 'L1.10A', 'L1.10C'],
'R21 17': [0.526499,0.003115,0.000267],
'R21 26': [0.458956,0,0.001819]})
Index 1.09A L1.10A L1.10C
205368421 1205 7562 1332
206321177 1253 7400 0
202574796 1852 5700 700
200212811 1452 4586 1180
204376114 1653 4393 290
WorkerID R21 17 R21 26
L1.09A 0.526499 0.458956
L1.10A 0.003115 0
L1.10C 0.000267 0.001819
I want this:
Index L1.09A L1.10A L1.10C R21 17 R21 26
205368421 1205 7562 1332 658 555
206321177 1253 7400 0 683 575
202574796 1852 5700 700 993 851
200212811 1452 4586 1180 779 669
204376114 1653 4393 290 884 759
I would be okay with some hints. Like someone told me this might be matrix multiplication. So .dot()
would be helpful. Is this the right direction?
Edit: I have now done the following:
df1 = df1.set_index('Index')
df2 = df2.set_index('WorkerID')
common_cols = list(set(df1.columns).intersection(df2.index))
df2 = df2.loc[common_cols]
df1_sorted = df1.reindex(sorted(df1.columns), axis=1)
df2_sorted = df2.sort_index(axis=0)
df_multiplied = df1_sorted @ df2_sorted
This works with my example dataframes, but not with my real dataframes.
My real ones have these dimensions: df1_sorted(10429, 69)
and df2_sorted(69, 18)
.
It should work, but my df_multiplied
is full with NaN.
Alright, I did it!
I had to replace all nan with 0.
So the final solution is:
df1 = df1.set_index('Index')
df2 = df2.set_index('WorkerID')
common_cols = list(set(df1.columns).intersection(df2.index))
df2 = df2.loc[common_cols]
df1_sorted = df1.reindex(sorted(df1.columns), axis=1)
df2_sorted = df2.sort_index(axis=0)
df1_sorted= df1_sorted.fillna(0)
df2_sorted= df2_sorted.fillna(0)
df_multiplied = df1_sorted @ df2_sorted