Search code examples
rdensity-plotecdf

Visualising the distribution for different subgroups


I'm using "d.pizza" data. There is variable called "delivery_min" which is delivery time (in minutes) and there is variable called "area" which can be one of three areas (Camden, Westminster and Brent). I want to draw a density plot that visualises the distribution of delivery time for these three areas.

I tried

 plot.ecdf(pizza_d$delivery_min)

this code works, but how can I do it for each area?

head(d.pizza)=

index       date week weekday        area count rabate  price operator  driver delivery_min
1 1     1 01.03.2014    9       6      Camden     5   TRUE 65.655   Rhonda  Taylor         20.0
2 2     2 01.03.2014    9       6 Westminster     2  FALSE 26.980   Rhonda Butcher         19.6
3 3     3 01.03.2014    9       6 Westminster     3  FALSE 40.970  Allanah Butcher         17.8
4 4     4 01.03.2014    9       6       Brent     2  FALSE 25.980  Allanah  Taylor         37.3
5 5     5 01.03.2014    9       6       Brent     5   TRUE 57.555   Rhonda  Carter         21.8
6 6     6 01.03.2014    9       6      Camden     1  FALSE 13.990  Allanah  Taylor         48.7
  temperature wine_ordered wine_delivered wrongpizza quality
1        53.0            0              0      FALSE  medium
2        56.4            0              0      FALSE    high
3        36.5            0              0      FALSE    <NA>
4          NA            0              0      FALSE    <NA>
5        50.0            0              0      FALSE  medium
6        27.0            0              0      FALSE     low

Solution

  • You could do:

    library(DescTools)
    
    data(d.pizza)
    
    plot.ecdf(subset(d.pizza, area == "Camden")$delivery_min, 
              col = "red", main = "ECDF for pizza deliveries")
    plot.ecdf(subset(d.pizza, area == "Westminster")$delivery_min, 
              add = TRUE, col = "blue")
    plot.ecdf(subset(d.pizza, area == "Brent")$delivery_min, 
              add = TRUE, col = "green")
    

    enter image description here