What is the python equivalent of copying indexed elements from a list to an existing array. This is the matlab code below to recreate in Python:
N = 5
cov_mat = ones(N, N+1)*-1
row = 1:1:N;
for n=1:N
cov_mat(n, 1:N+1-n) = row(n:N);
end
You forgot to show us what the MATLAB code does. My MATLAB memory is dated, so I can't readily run it in my head :(
In an Octave session:
>> N=5;
>> cov_mat = ones(N,N+1)*-1;
>> row=1:1:N;
>> row
row =
1 2 3 4 5
>> cov_mat(1,1:N+1-1) = row(1:N);
>> cov_mat
cov_mat =
1 2 3 4 5 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
>> cov_mat(2,1:N+1-2) = row(2:N);
>> cov_mat(3,1:N+1-3) = row(3:N);
>> cov_mat
cov_mat =
1 2 3 4 5 -1
2 3 4 5 -1 -1
3 4 5 -1 -1 -1
-1 -1 -1 -1 -1 -1
-1 -1 -1 -1 -1 -1
So you set all to -1, and then fill a triangle with slices of the range.
A numpy
equivalent (after a bit of trial and error to get the indices right):
In [134]: N=5
In [135]: res = -np.ones((N,N+1),int)
In [136]: for i in range(N):
...: res[i,:N-i]=1+np.arange(i,N)
...:
...:
In [137]: res
Out[137]:
array([[ 1, 2, 3, 4, 5, -1],
[ 2, 3, 4, 5, -1, -1],
[ 3, 4, 5, -1, -1, -1],
[ 4, 5, -1, -1, -1, -1],
[ 5, -1, -1, -1, -1, -1]])
In both languages it would be nice to avoid the row iteration, but it's probably not worth the effort.
We can index the triangular values with:
In [145]: res[np.arange(5)[:,None]<np.arange(6)[::-1]]
Out[145]: array([1, 2, 3, 4, 5, 2, 3, 4, 5, 3, 4, 5, 4, 5, 5])