I have a pandas dataframe which has only one column, the value of each cell in the column is a list/array of numbers, this list is of length 100 and this length is consistent across all the cell values.
We need to convert each list value as a column value, in other words have a dataframe which has 100 columns and each column value is at a list/array item.
It can be done with iterrows() as shown below, but we have around 1.5 million rows and need a scalable solution as iterrows() would take alot of time.
cols = [f'col_{i}' for i in range(0, 4)]
df_inter = pd.DataFrame(columns = cols)
for index, row in df.iterrows():
df_inter.loc[len(df_inter)] = row['message']
You can do this:
In [28]: df = pd.DataFrame({'message':[[1,2,3,4,5], [3,4,5,6,7]]})
In [29]: df
Out[29]:
message
0 [1, 2, 3, 4, 5]
1 [3, 4, 5, 6, 7]
In [30]: res = pd.DataFrame(df.message.tolist(), index= df.index)
In [31]: res
Out[31]:
0 1 2 3 4
0 1 2 3 4 5
1 3 4 5 6 7