I'm working on a large scale MILP. So I have to set the time limit to a reasonable value or I have to set the MIPGap to a reasonable level. I already know the documentation from gurobi.
MIPGap: https://www.gurobi.com/documentation/6.5/refman/mipgap.html
TimeLimit: https://www.gurobi.com/documentation/8.0/refman/timelimit.html#parameter:TimeLimit
MIPGap Gurobi will stop when it finds a solution within a percentage of optimal
TimeLimit Gurobi will stop after a certain amount of time.
But can you send me an example with setting for example the time limit to 5 minutes or setting the MIPGap to 5 % ?
I don't know how to exactly implement those character?
Please help me I am quite new to python
I tried this but this doesn't work
model.Params.TimeLimit = 5
model.setParam("MIPGap", mipgap)
Here is a short version of my model
from gurobipy import *
import csv
import geopandas as gpd
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
from pandas.core.common import flatten
import math
################################# SOLVE function START ###################################################################
def solve(
vpmaint, wpunit, wuunit, vumaint,
kfuel, koil, kbio,
hb, ht,
cj, ci,
zinvestp, zinvestu,
DEMAND, DEMANDM,
LOCATION, SOURCE, BTYPE, SOURCEM,
osi, oij, ojm
):
model = Model("Biomass to liquid supply chain network design")
################################# SOLVE function END ###################################################################
####################################################### variable section START ####################################################################################################
#binary variables ############################# Binary 1-2 ####################################################
#binary 1: Pyrolyse i with capacity p open?
fpopen = {}
for i in LOCATION:
for p in R:
fpopen[i,p] = model.addVar(vtype = GRB.BINARY,name = "fpopen_%s_%s" % (i,p))
#binary 2: Upgrading j with capacity r and technology t open?
fuopen = {}
for j in LOCATION:
for r in R:
for t in TECHNOLOGY:
fuopen[j,r,t] = model.addVar(vtype = GRB.BINARY,name = "fuopen_%s_%s_%s" % (j,r,t))
################################################ continous variables Integer 1-9 #############################################################
#integer 1: Mass of Biomass type b from Source s to Pyrolyse i
xsi = {}
for s in SOURCE:
for i in LOCATION:
for b in BTYPE:
xsi[s,i,b] = model.addVar(vtype = GRB.INTEGER,name = "xsi_%s_%s_%s" % (s,i,b))
#integer 2:Mass of Biomass type b from Source s to Pyrolyse i
xjm = {}
for j in LOCATION:
for m in DEMAND:
xjm[j,m] = model.addVar(vtype = GRB.INTEGER,name = "xjm_%s_%s" % (j,m))
model.update()
model.modelSense = GRB.MAXIMIZE
####################################################### Objective Function START
model.setObjective(
#quicksum(DEMANDM[m] * l for m in DEMANDM )
quicksum(xjm[j,m] * l for j in LOCATION for m in DEMAND)
- quicksum(ainvest[i] + aoperation[i] + aprod[i] for i in LOCATION)
- quicksum(einvest[j] + eoperation[j] + eprod[j] for j in LOCATION)
## ......
####################################################### Constraints
############################## Satisfy Demand Constraint 1-3
# Constraint 1: Always Satisfy Demand at marketplace m
for m in DEMAND:
model.addConstr(quicksum(xjm[j,m] for j in LOCATION) <= int(DEMANDM[m]))
# for m in DEMAND:
# model.addConstr(quicksum(x[j,m] for j in LOCATION) >= DEMANDM[m])
# Constraint 2: The amount of bio-oil sent from pyrolyse station i to Upgrading
###...Here are more constraints
model.optimize()
model.getVars()
model.MIPGap = 5
model.Params.TimeLimit = 1.0
model.setParam("MIPGap", mipgap)
Alternatively, you could call the setParam()
method of the model:
model.setParam('MIPGap', 0.05)
model.setParam('Timelimit', 300)