I've the below data.
When I checked the DType of these fields it is showing as object, now my requirement is I would like to convert them into int64
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 area_type 3 non-null object
1 availability 3 non-null object
2 location 3 non-null object
3 size 3 non-null object
4 society 3 non-null object
Can someone help me with the code to convert them. I tried using the below code but it throwed me an error.
dataset['area_type'] = dataset['area_type'].str.replace(',','').astype(int)
ERROR
ValueError: invalid literal for int() with base 10: 'Super built-up Area'
I've tried using the LabelEncoder and is working fine for me.
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
dataset['area_type']= le.fit_transform(dataset['area_type'])
dataset['availability']= le.fit_transform(dataset['availability'])
dataset['location']= le.fit_transform(dataset['location'])
dataset['size']= le.fit_transform(dataset['size'])
dataset['society']= le.fit_transform(dataset['society'])