I'm attempting to run DBSCAN against some grouped coordinates in order to get sub-clusters. I've clustered some spacial data and I'd now like to further divide these regions according to the density of points within them. I think DBSCAN is probably the best way to do this.
My issue is that I can't figure out how to run DBSCAN against each cluster seperately and then output the cluster assignment as a new column. Here's some sample data:
library(dplyr)
library(dbscan)
# Create sample data
df <- data.frame(
"ID"=1:200,
"X"=c(1.0083,1.3166,1.3072,1.1311,1.2984,1.2842,1.1856,1.3451,1.1932,1.0926,1.2464,1.3197,1.2331,1.2996,1.3482,
1.1944,1.2800,1.3051,1.4471,0.9068,1.3150,1.1846,1.0232,1.0005,1.0640,1.3177,1.1015,0.9598,1.0354,1.2203,
0.8388,0.8655,1.3387,1.0133,1.0106,1.1753,1.3200,1.0139,1.1511,1.3508,1.2747,1.3681,1.1074,1.2735,1.2245,
0.9695,1.3250,1.0537,1.2020,1.3093,0.9268,1.3244,1.2626,1.3123,1.2819,1.1063,0.8759,1.0063,1.0173,1.0187,
1.2396,1.0241,1.2619,1.2682,1.0008,1.0827,1.3639,1.3099,1.0004,0.8886,1.2359,1.1370,1.2783,1.0803,1.1918,
1.1156,1.3313,1.1205,1.0776,1.3895,1.3559,0.8518,1.1315,1.3521,1.2281,1.2589,0.9974,1.1487,1.4204,0.9998,
1.0154,1.0098,0.8851,1.0252,0.9331,1.2197,1.0084,1.2303,1.2808,1.3125,0.5500,0.6694,0.3301,0.3787,0.6492,
0.6568,0.6773,0.3769,0.6237,0.7265,0.5509,0.3579,0.7201,0.2631,0.3881,0.7596,0.3343,0.7049,0.3430,0.2951,
0.5483,0.7699,0.3806,0.6555,0.2524,0.4030,0.6329,0.5006,0.2701,0.0822,0.5442,0.5233,0.7105,0.5660,0.3962,
0.3187,0.3143,0.5673,0.3731,0.7310,0.6376,0.4864,0.8865,0.3352,0.7540,0.0690,0.7983,0.6990,0.4090,0.5658,
0.5636,0.5420,0.7223,0.6146,0.5648,0.2711,0.3422,0.7214,0.2196,0.2848,0.6496,0.7907,0.7418,0.7825,0.4550,
0.4361,0.7417,0.2661,0.8978,0.7875,0.2343,0.3853,0.6874,0.7761,0.2905,0.6092,0.5329,0.6189,0.0684,0.5726,
0.5740,0.7060,0.4609,0.3568,0.7037,0.2874,0.6200,0.7149,0.5100,0.7059,0.2520,0.3105,0.6870,0.7888,0.3674,
0.6514,0.7271,0.6679,0.3752,0.7067),
"Y"=c(-1.2547,-1.1499,-1.1803,-1.0626,-1.2877,-1.1151,-1.0958,-1.1339,-1.0808,-1.5461,-1.0775,-1.1431,-1.0499,
-1.1521,-1.1675,-1.0963,-1.1407,-1.1916,-1.1229,-1.2297,-1.1308,-1.0341,-1.3071,-1.2370,-1.5043,-1.1154,
-1.5452,-1.0349,-1.5412,-1.0348,-1.3620,-1.3776,-1.1830,-1.2552,-1.2354,-1.0838,-1.1214,-1.2396,-1.4937,
-1.0793,-1.1857,-1.0679,-1.5425,-1.1633,-1.1620,-1.0838,-1.0750,-1.3493,-1.4155,-1.1354,-1.0615,-1.1494,
-1.1620,-1.1582,-1.1800,-1.5230,-1.3019,-1.2484,-1.5490,-1.2435,-1.0487,-1.2330,-1.1234,-1.0924,-1.0702,
-1.0446,-1.1077,-1.1144,-1.2170,-1.2715,-1.1537,-1.5077,-1.1305,-1.3396,-1.2107,-1.5458,-1.1482,-1.1224,
-1.3690,-1.2058,-1.1685,-1.3400,-1.5033,-1.2152,-1.3805,-1.1439,-1.5183,-1.4288,-1.1252,-1.2330,-1.2511,
-1.5429,-1.3333,-1.1851,-1.1367,-1.3952,-1.1240,-1.2113,-1.1632,-1.1965,-0.9917,-0.7416,-0.7729,-1.1279,
-0.9323,-0.9372,-0.7013,-1.1746,-0.9191,-0.9356,-0.7873,-1.1957,-0.9838,-0.5825,-1.0738,-0.9302,-0.7713,
-0.9407,-0.7774,-0.8160,-0.9861,-1.0440,-0.9896,-0.6478,-0.8865,-1.0601,-1.0640,-0.9898,-0.5989,-0.7375,
-0.7689,-0.9799,-0.9147,-1.1048,-0.9735,-0.8591,-0.7913,-1.0085,-0.7231,-0.9688,-0.9272,-0.9395,-0.9494,
-0.7859,-1.0817,-0.7262,-0.9915,-0.9329,-1.0953,-1.0425,-1.0806,-1.0132,-0.8514,-1.0785,-1.1109,-0.8542,
-1.0849,-0.9665,-0.5940,-0.6145,-0.7830,-0.9601,-0.8996,-0.7717,-0.7447,-1.0406,-1.0067,-0.5710,-0.9839,
-1.0594,-0.7069,-1.1202,-0.9705,-1.0100,-0.6377,-1.0632,-0.9450,-0.9163,-0.7865,-1.0090,-1.1005,-1.0049,
-0.8042,-1.0781,-0.6829,-0.5962,-1.0759,-0.7918,-0.9732,-0.7353,-0.5615,-1.2002,-0.9295,-0.9944,-1.1570,
-0.9524,-0.9257,-0.9360,-1.1328,-0.7661),
"cluster"=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2))
# How do you run DBSCAN against the points within each cluster?
I first thought I'd try to use the group_by function in dplyr but DBSCAN requires a data matrix input and group_by doesn't work for matrices.
matrix <- as.matrix(df[, -1])
set.seed(1234)
db = matrix %>%
group_by(cluster) %>%
dbscan(matrix, 0.4, 4)
#Error in UseMethod("group_by_") :
# no applicable method for 'group_by_' applied to an object of class "c('matrix', 'double', 'numeric')"
I've also tried using by() but get duplicate results for each cluster grouping, which isn't right:
by(data = df, INDICES = df$cluster, FUN = function(x) {
out <- dbscan(as.matrix(df[, c(2:3)]),eps=.0215,minPts=4)
})
#df$cluster: 1
#DBSCAN clustering for 200 objects.
#Parameters: eps = 0.0215, minPts = 4
#The clustering contains 10 cluster(s) and 138 noise points.
#
# 0 1 2 3 4 5 6 7 8 9 10
#138 11 12 4 5 8 2 4 8 4 4
#
#Available fields: cluster, eps, minPts
#--------------------------------------------------------------------------
#df$cluster: 2
#DBSCAN clustering for 200 objects.
#Parameters: eps = 0.0215, minPts = 4
#The clustering contains 10 cluster(s) and 138 noise points.
#
# 0 1 2 3 4 5 6 7 8 9 10
#138 11 12 4 5 8 2 4 8 4 4
#
#Available fields: cluster, eps, minPts
Can anyone point me in the right direction?
To be clear, dbscan::dbscan
works fine on data.frame
objects. You do not need to convert to matrix. It returns an object that includes a vector with the same dimension as the number of records in your input. The issue is that dplyr
exposes variables to other functions as individual vectors, rather than as data.frame
or matrix
objects. You are free to do something like:
df %>%
group_by(cluster) %>%
mutate(
dbscan_cluster = dbscan::dbscan(
data.frame(X, Y),
eps = 0.0215,
minPts = 4
)[["cluster"]]
)
dplyr
is not necessary, by
also works, you just need to supply a generic function rather than one that directly references the source object directly. Your data must already be ordered by cluster.
df$dbscan_cluster <- unlist(
by(
df,
INDICES = df$cluster,
function(x) dbscan::dbscan(x[,c(2,3)], eps = 0.0215, minPts = 4)[["cluster"]]
)
)
However, you can still get garbage results if you don't have a good way to pick your epsilon. You might consider using dbscan::optics
instead.