I am running a glmnet model in caret on the built-in infert
dataset, e.g.,
infert_y <- factor(infert$case) %>% plyr::revalue(c("0"="control", "1"="case"))
infert_x <- subset(infert, select=-case)
new.x <- model.matrix(~., infert_x)
# Create cross-validation folds:
myFolds <- createFolds(infert_y, k = 10)
# Create reusable trainControl object:
myControl_categorical <- trainControl(
summaryFunction = twoClassSummary,
classProbs = TRUE, # IMPORTANT!
verboseIter = TRUE,
savePredictions = TRUE,
index = myFolds
)
model_glmnet_pca <- train(
x = new.x,
y = infert_y,
metric = "ROC",
method = "glmnet",
preProcess=c("zv", "nzv","medianImpute", "center", "scale", "pca"),
trControl = myControl_categorical,
tuneGrid= expand.grid(alpha= seq(0, 1, length = 20),
lambda = seq(0.0001, 1, length = 100))
)
But when I try to get the coefficients:
bestlambda <- model_glmnet_pca$results$lambda[model_glmnet_pca$results$ROC == max(model_glmnet_pca$results$ROC)]
coef(model_glmnet_pca, s=bestlambda)
returns:
NULL
I tried:
coef.glmnet(model_glmnet_pca, s=bestlambda)
which returns:
Error in predict.train(object, s = s, type = "coefficients", exact = exact, :
type must be either "raw" or "prob"
But surely when I'm calling coef() my "type" argument is set to "coefficients"? If I try
coef.glmnet(model_glmnet_pca, s=bestlambda, type="prob")
it returns:
Error in predict.train(object, s = s, type = "coefficients", exact = exact, :
formal argument "type" matched by multiple actual arguments
I am very confused, can anyone point out what I'm doing wrong?
To get the coefficients from the best model, you can use:
coef(model_glmnet_pca$finalModel, model_glmnet_pca$finalModel$lambdaOpt)
See e.g. this link on using regularised regression models with caret
.