I have a data table that provides the length and composition of given vectors for example:
set.seed(1)
dt = data.table(length = c(100, 150),
n_A = c(30, 30),
n_B = c(20, 100),
n_C = c(50, 20))
I need to randomly split each vector into two subsets with 80% and 20% of observations respectively. I can currently do this using a for loop. For example:
dt_80_list <- list() # create output lists
dt_20_list <- list()
for (i in 1:nrow(dt)){ # for each row in the data.table
sample_vec <- sample( c( rep("A", dt$n_A[i]), # create a randomised vector with the given nnumber of each component.
rep("B", dt$n_B[i]),
rep("C", dt$n_C[i]) ) )
sample_vec_80 <- sample_vec[1:floor(length(sample_vec)*0.8)] # subset 80% of the vector
dt_80_list[[i]] <- data.table( length = length(sample_vec_80), # count the number of each component in the subset and output to list
n_A = length(sample_vec_80[which(sample_vec_80 == "A")]),
n_B = length(sample_vec_80[which(sample_vec_80 == "B")]),
n_C = length(sample_vec_80[which(sample_vec_80 == "C")])
)
dt_20_list[[i]] <- data.table( length = dt$length[i] - dt_80_list[[i]]$length, # subtract the number of each component in the 80% to identify the number in the 20%
n_A = dt$n_A[i] - dt_80_list[[i]]$n_A,
n_B = dt$n_B[i] - dt_80_list[[i]]$n_B,
n_C = dt$n_C[i] - dt_80_list[[i]]$n_C
)
}
dt_80 <- do.call("rbind", dt_80_list) # collapse lists to output data.tables
dt_20 <- do.call("rbind", dt_20_list)
However, the dataset I need to apply this to is very large, and this is too slow. Does anyone have any suggestions for how I could improve performance?
Thanks.
(I assumed your dataset consists of many more rows (but only a few colums).)
Here's a version I came up with, with mainly three changes
.N
and by=
to count the number of "A","B","C" drawn in each rowsample
dt
and dt_80
to calculate dt_20
without a for-loop## draw training data
dt_80 <- dcast(
dt[,row:=1:nrow(dt)
][, .(draw=sample(c(rep("A80",n_A),
rep("B80",n_B),
rep("C80",n_C)),
size=.8*length) )
, by=row
][,.N,
by=.(row,draw)],
row~draw,value.var="N")[,length80:=A80+B80+C80]
## draw test data
dt_20 <- dt[dt_80,
.(A20=n_A-A80,
B20=n_B-B80,
C20=n_C-C80),on="row"][,length20:=A20+B20+C20]
There is probably still room for optimization, but I hope it already helps :)
EDIT
Here I add my initial first idea, I did not post this because the code above is much faster. But this one might be more memory-efficient which seems crucial in your case. So, even if you already have a working solution, this might be of interest...
library(data.table)
library(Rfast)
## add row numbers
dt[,row:=1:nrow(dt)]
## sampling function
sampfunc <- function(n_A,n_B,n_C){
draw <- sample(c(rep("A80",n_A),
rep("B80",n_B),
rep("C80",n_C)),
size=.8*(n_A+n_B+n_C))
out <- Rfast::Table(draw)
return(as.list(out))
}
## draw training data
dt_80 <- dt[,sampfunc(n_A,n_B,n_C),by=row]