I understand this is not a recommended setup for machine learning in any sense, but I would like to work with what I have.
Not being an expert, I have been told that tf-gpu should work with any device supported by cuda.
When I run:
from numba import cuda
cuda.detect()
I get:
Found 1 CUDA devices
id 0 b'GeForce MX130' [SUPPORTED]
compute capability: 5.0
pci device id: 0
pci bus id: 1
Summary:
1/1 devices are supported
And I can get the GPU to work with some basic 'vectorized' tasks.
Also, running:
import tensorflow as tf
tf.test.is_built_with_cuda()
will return True
However, running
tf.config.experimental.list_physical_devices('gpu')
will return an empty list.
Running:
print("Num GPUs Available: ", len(tf.config.experimental.list_physical_devices('GPU')))
Will return:
Num GPUs Available: 0
Running:
strategy = tf.distribute.MirroredStrategy()
print("Number of devices: {}".format(strategy.num_replicas_in_sync))
will return:
WARNING:tensorflow:There are non-GPU devices in `tf.distribute.Strategy`, not using nccl allreduce.
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:CPU:0',)
Number of devices: 1
I have trained some basic models with the non-gpu version of tensorflow but I have no clue about how to deal with tf-gpu. I was able to fit a model with CuDNNLSTM layers, but the script didn't use the GPU, according to task manager.
I will appreciate any advice on how to get it to use my 'gpu' or a confirmation that it is not possible. Thanks!
EDITED:
I uninstalled keras and both tensorflow versions and installed only tensorflow-gpu. Nothing changed.
Unfortunately No.
Even though the official specs stated 'Yes', the CUDA GPU list did not mentioned MX130 as part of its list.
(I also running MX130 on my notebook)
reference: