I'm trying to run a monthly registered data on my VECM with stationary data and dummy variable as exogenous variables. I want it to predict 2 years ahead. So I use the last 24 observations
library(tsDyn)
exogen1<-rnorm(120,0,10)
exogen2<-rnorm(120,0,10)
dc <- rep(0, 120)
dc[60:80] <- 1 #dummy variable representation
x<-rnorm(120,0,10)
y<-rnorm(120,0,15)
i<-1:120
x1<-sapply(i,function(k) sum(x[1:k]))
x2<-x1+y
plot(x1,type="l")#non-stationary macro variable x1 to predict on the model
lines(x2,col="red")#non-stationary macro variable x2 cointegrated with x1
lines(exogen1,col="green")#stationary variable exogen1 that explains the other variables
lines(exogen2,col="blue")#stationary variable exogen2 that explains the other variables
endogen<-cbind(x1,x2)
exogen<- cbind(exogen1, exogen2, dc)
mdl<- VECM(endogen, lag=1, estim = "ML", r=1, exogen = exogen)
new_endogen <-tail(cbind(x1,x2),24)
new_exogen <- tail(cbind(exogen1,exogen2,dc),24)
predict(mdl, newdata=new_endogen, exoPred = new_exogen, n.ahead=24)
I get this error message when I run the last code line: Error in predict.VAR(mdl, newdata = new_endogen, exoPred = new_exogen, : Please provide newdata with nrow=lag
Why should the test data (newdata
) have the same length as the lag
of the VECM???
I tried to change the lag
to 24 (number of rows in newdata
) or 48 (total length of newdata
) just to see if it would change the result. But it kept the same
I also tried to change the length of newdata
to 1 (length of the vecm's lag
) and 2 (length of the var model's lag
) but kept getting the same result
What could be wrong?
You were right to try with 2 rows (which is the number of lags in the model in levels, this is admittedly slightly tricky). Not sure why it didn't work?
library(tsDyn)
#> Registered S3 method overwritten by 'quantmod':
#> method from
#> as.zoo.data.frame zoo
packageVersion("tsDyn")
#> [1] '0.9.48.999'
exogen1<-rnorm(120,0,10)
exogen2<-rnorm(120,0,10)
dc <- rep(0, 120)
dc[60:80] <- 1 #dummy variable representation
x<-rnorm(120,0,10)
y<-rnorm(120,0,15)
i<-1:120
x1<-sapply(i,function(k) sum(x[1:k]))
x2<-x1+y
endogen<-cbind(x1,x2)
exogen<- cbind(exogen1, exogen2, dc)
mdl<- VECM(endogen, lag=1, estim = "ML", r=1, exogen = exogen)
#> Warning: tail(., addrownums = V) is deprecated.
#> Use tail(., keepnums = V) instead.
new_endogen <-tail(cbind(x1,x2),24)
new_exogen <- tail(cbind(exogen1,exogen2,dc),24)
predict(mdl, newdata=new_endogen[1:2,,drop=FALSE], exoPred = new_exogen, n.ahead=24)
#> x1 x2
#> 121 -121.6248 -120.4420
#> 122 -124.3986 -121.1053
Created on 2020-09-28 by the reprex package (v0.3.0)