I am trying to concatenate two layers in such a way that layers are assigned trainable weights while concatenating. The idea behind this is that my model can determine which layer should be given higher weights while concatenating.
I have read this code [https://stackoverflow.com/a/62595957/12848819][1]
class WeightedAverage(Layer):
def __init__(self, n_output):
super(WeightedAverage, self).__init__()
self.W = tf.Variable(initial_value=tf.random.uniform(shape=[1,1,n_output], minval=0, maxval=1),
trainable=True) # (1,1,n_inputs)
def call(self, inputs):
# inputs is a list of tensor of shape [(n_batch, n_feat), ..., (n_batch, n_feat)]
# expand last dim of each input passed [(n_batch, n_feat, 1), ..., (n_batch, n_feat, 1)]
inputs = [tf.expand_dims(i, -1) for i in inputs]
inputs = Concatenate(axis=-1)(inputs) # (n_batch, n_feat, n_inputs)
weights = tf.nn.softmax(self.W, axis=-1) # (1,1,n_inputs)
# weights sum up to one on last dim
return tf.reduce_sum(weights*inputs, axis=-1) # (n_batch, n_feat)
but this one performs the weighted average of the layers. Please help. Let me know if you more questions. Thanks.
I have used a weighted sum (not an average), to similar effect
class WeightedSum(layers.Layer):
"""A custom keras layer to learn a weighted sum of tensors"""
def __init__(self, **kwargs):
super(WeightedSum, self).__init__(**kwargs)
def build(self, input_shape=1):
self.a = self.add_weight(name='alpha',
shape=(1),
initializer=tf.keras.initializers.Constant(0.5),
dtype='float32',
trainable=True,
constraint=tf.keras.constraints.min_max_norm(
max_value=1, min_value=0))
super(WeightedSum, self).build(input_shape)
def call(self, model_outputs):
return self.a * model_outputs[0] + (1 - self.a) * model_outputs[1]
def compute_output_shape(self, input_shape):
return input_shape[0]