I inadvertently let my students overconstrain a shared class used to solve the following problem. I realized it might be a problem denizens of this site might enjoy.
The first team/function, getNodes, takes a string representing a prefix expression using signed integers and the four operations +, -, *, and / and produces the corresponding null terminated linked list of tokens, using the class Node, with tokens linked through the "right" pointer.
The second team/function, getTree, takes a similar string, passes it to getNodes, and relinks the resultant nodes to be an expression tree.
The third team/function, evaluate, takes a similar string, passes it to getTree, and evaluates the resultant expression tree to form an answer.
The over-constrained exptree.h follows. The problem has to be solved by writing just the three functions defined above, no additional functions.
#ifndef EXPTREE_H_
#define EXPTREE_H_
using namespace std;
enum Ops{ADD, SUB, MUL, DIV, NUM};
class Node {
private:
int num;
Ops op;
Node *left, *right;
public:
friend Node *getNodes(string d);
friend Node *getTree(string d);
friend int evaluate (string);
};
int evaluate(string d);
Node *getNodes(string d);
Node *getTree(string d);
#endif
The only libraries that can be used are these
#include <iostream>
#include <vector>
#include <string>
#include "exptree.h"
For those of you worried about my students, I will be pointing out today how just a couple of more well placed functions would allow this problem to be easily solved. I know the expression tree can code rational numbers and not just integers. I'll be pointing that out today as well.
Here is the driver program I gave them based on their specs.
#include <iostream>
#include <string>
#include "exptree.h"
using namespace std;
void test(string s, int target) {
int result = evaluate(s);
if (result == target)
cout << s << " correctly evaluates to " << target << endl;
else
cout << s << "(" << result
<< ") incorrectly evaluates to " << target << endl;
}
int main() {
test("42", 42);
test("* - / 4 2 1 42", 42);
test("* - / -4 +2 -1 2", -2);
test("* - / -4 +2 -1 2 ", -2);
test("* 9 6", 54);
return 0;
}
Can you write the three functions in as elegant a fashion as possible to solve this nightmarish problem?
For what its worth, here is the solution I coded up just before I posted the question
#include <iostream>
#include <vector>
#include "exptree.h"
using namespace std;
Node *getNodes(string s) {
const int MAXINT =(int)(((unsigned int)-1) >> 1), MININT = -MAXINT -1;
Node *list;
int sign, num;
s += " "; // this simplifies a lot of logic, allows trailing white space to always close off an integer
list = (Node *) (num = sign = 0);
for (int i=0; i<s.size(); ++i) {
char c = s[i]; // more efficient and cleaner reference to the current character under scrutiny
if (isdigit(c)) {
if (sign == 0) sign = 1; // if sign not set, then set it. A blank with a sign==0 now signifies a blank that can be skipped
num = 10*num + c - '0';
} else if (((c=='+') || (c=='-')) && isdigit(s[i+1])) { // another advantage of adding blank to string above so don't need a special case
sign = (c=='+') ? 1 : -1;
} else if ( !isspace(c) && (c != '+') && (c != '-') && (c != '*') && (c != '/')) {
cout << "unexpected character " << c << endl;
exit(1);
} else if (!isspace(c) || (sign != 0)) { // have enough info to create next Node
list->left = (list == 0) ? (list = new Node) : (list->left->right = new Node); // make sure left pointer of first Node points to last Node
list->left->right = 0; // make sure list is still null terminated
list->left->op = (c=='+' ? ADD : (c=='-' ? SUB : (c=='*' ? MUL : (c=='/' ? DIV : NUM)))); // choose right enumerated type
list->left->num = (list->left->op==NUM) ? sign*num : MININT; // if interior node mark number for evaluate function
num = sign = 0; // prepare for next Node
}
}
return list;
}
Node *getTree(string s) {
Node *nodes = getNodes(s), *tree=0, *root, *node;
vector<Node *> stack;
if (nodes == 0) return tree;
root = tree = nodes;
nodes = nodes->right;
for (node=nodes; node != 0; node=nodes) {
nodes = nodes->right;
if (root->op != NUM) { // push interior operator Node on stack til time to point to its right tree
stack.push_back(root);
root = (root->left = node); // set interior operator Node's left tree and prepare to process that left tree
} else {
root->left = root->right = 0; // got a leaf number Node so finish it off
if (stack.size() == 0) break;
root = stack.back(); // now pop operator Node off the stack
stack.pop_back();
root = (root->right = node); // set its left tree and prepare to process that left tree
}
}
if ((stack.size() != 0) || (nodes != 0)) {
cout << "prefix expression has missing or extra terms" << endl;
exit(1);
}
return tree;
}
int evaluate(string s) {
// MININT is reserved value signifying operator waiting for a left side value, low inpact since at edge of representable integers
const int MAXINT =(int)(((unsigned int)-1) >> 1), MININT = -MAXINT -1;
Node *tree = getTree(s);
vector<Node *> stack;
int v = 0; // this is value of a leaf node (a number) or the result of evaluating an interior node
if (tree == 0) return v;
do {
v = tree->num;
if (tree->op != NUM) {
stack.push_back(tree);
tree = tree->left; // prepare to process the left subtree
} else while (stack.size() != 0) { // this while loop zooms us up the right side as far as we can go (till we come up left side or are done)
delete tree; // done with leaf node or an interior node we just finished evaluating
tree = stack.back(); // get last interior node from stack
if (tree->num == MININT) { // means returning up left side of node, so save result for later
tree->num = v;
tree = tree->right; // prepare to evaluate the right subtree
break; // leave the "else while" for the outer "do while" which handles evaluating an expression tree
} else { // coming up right side of an interior node (time to calculate)
stack.pop_back(); // all done with interior node
v = tree->op==ADD ? tree->num+v : (tree->op==SUB ? tree->num-v : (tree->op==MUL ? tree->num*v : tree->num/v)) ;
}
}
} while (stack.size() != 0);
return v;
}