Search code examples
pythonpandasdictionaryjson-normalize

How to json_normalize a column in pandas with empty lists, without losing records


I am using pd.json_normalize to flatten the "sections" field in this data into rows. It works fine except for rows where the "sections" is an empty list.

This ID gets completely ignored and is missing from the final flattened dataframe. I need to make sure that I have at least one row per unique ID in the data (some IDs may have many rows up to one row per unique ID, per unique section_id, question_id, and answer_id as I unnest more fields in the data):

     {'_id': '5f48f708fe22ca4d15fb3b55',
      'created_at': '2020-08-28T12:22:32Z',
      'sections': []}]

Sample data:

sample = [{'_id': '5f48bee4c54cf6b5e8048274',
          'created_at': '2020-08-28T08:23:00Z',
          'sections': [{'comment': '',
            'type_fail': None,
            'answers': [{'comment': 'stuff',
              'feedback': [],
              'value': 10.0,
              'answer_type': 'default',
              'question_id': '5e59599c68369c24069630fd',
              'answer_id': '5e595a7c3fbb70448b6ff935'},
             {'comment': 'stuff',
              'feedback': [],
              'value': 10.0,
              'answer_type': 'default',
              'question_id': '5e598939cedcaf5b865ef99a',
              'answer_id': '5e598939cedcaf5b865ef998'}],
            'score': 20.0,
            'passed': True,
            '_id': '5e59599c68369c24069630fe',
            'custom_fields': []},
           {'comment': '',
            'type_fail': None,
            'answers': [{'comment': '',
              'feedback': [],
              'value': None,
              'answer_type': 'not_applicable',
              'question_id': '5e59894f68369c2398eb68a8',
              'answer_id': '5eaad4e5b513aed9a3c996a5'},
             {'comment': '',
              'feedback': [],
              'value': None,
              'answer_type': 'not_applicable',
              'question_id': '5e598967cedcaf5b865efe3e',
              'answer_id': '5eaad4ece3f1e0794372f8b2'},
             {'comment': "stuff",
              'feedback': [],
              'value': 0.0,
              'answer_type': 'default',
              'question_id': '5e598976cedcaf5b865effd1',
              'answer_id': '5e598976cedcaf5b865effd3'}],
            'score': 0.0,
            'passed': True,
            '_id': '5e59894f68369c2398eb68a9',
            'custom_fields': []}]},
         {'_id': '5f48f708fe22ca4d15fb3b55',
          'created_at': '2020-08-28T12:22:32Z',
          'sections': []}]

Tests:

df = pd.json_normalize(sample)
df2 = pd.json_normalize(df.to_dict(orient="records"), meta=["_id", "created_at"], record_path="sections", record_prefix="section_")

At this point I am now missing a row for ID "5f48f708fe22ca4d15fb3b55" which I still need.

df3 = pd.json_normalize(df2.to_dict(orient="records"), meta=["_id", "created_at", "section__id", "section_score", "section_passed", "section_type_fail", "section_comment"], record_path="section_answers", record_prefix="")

Can I alter this somehow to make sure that I get one row per ID at minimum? I'm dealing with millions of records and don't want to realize later that some IDs were missing from my final data. The only solution I can think of is to normalize each dataframe and then left join it to the original dataframe again.


Solution

    • The best way to resolve the issue, is fix the dict
    • If sections is an empty list, fill it with [{'answers': [{}]}]
    for i, d in enumerate(sample):
        if not d['sections']:
            sample[i]['sections'] = [{'answers': [{}]}]
    
    df = pd.json_normalize(sample)
    df2 = pd.json_normalize(df.to_dict(orient="records"), meta=["_id", "created_at"], record_path="sections", record_prefix="section_")
    
    # display(df2)
      section_comment  section_type_fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               section_answers  section_score section_passed               section__id section_custom_fields                       _id            created_at
    0                                NaN                                                                                                                                                                        [{'comment': 'stuff', 'feedback': [], 'value': 10.0, 'answer_type': 'default', 'question_id': '5e59599c68369c24069630fd', 'answer_id': '5e595a7c3fbb70448b6ff935'}, {'comment': 'stuff', 'feedback': [], 'value': 10.0, 'answer_type': 'default', 'question_id': '5e598939cedcaf5b865ef99a', 'answer_id': '5e598939cedcaf5b865ef998'}]           20.0           True  5e59599c68369c24069630fe                    []  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z
    1                                NaN  [{'comment': '', 'feedback': [], 'value': None, 'answer_type': 'not_applicable', 'question_id': '5e59894f68369c2398eb68a8', 'answer_id': '5eaad4e5b513aed9a3c996a5'}, {'comment': '', 'feedback': [], 'value': None, 'answer_type': 'not_applicable', 'question_id': '5e598967cedcaf5b865efe3e', 'answer_id': '5eaad4ece3f1e0794372f8b2'}, {'comment': 'stuff', 'feedback': [], 'value': 0.0, 'answer_type': 'default', 'question_id': '5e598976cedcaf5b865effd1', 'answer_id': '5e598976cedcaf5b865effd3'}]            0.0           True  5e59894f68369c2398eb68a9                    []  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z
    2             NaN                NaN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          [{}]            NaN            NaN                       NaN                   NaN  5f48f708fe22ca4d15fb3b55  2020-08-28T12:22:32Z
    
    df3 = pd.json_normalize(df2.to_dict(orient="records"), meta=["_id", "created_at", "section__id", "section_score", "section_passed", "section_type_fail", "section_comment"], record_path="section_answers", record_prefix="")
    
    # display(df3)
      comment feedback  value     answer_type               question_id                 answer_id                       _id            created_at               section__id section_score section_passed section_type_fail section_comment
    0   stuff       []   10.0         default  5e59599c68369c24069630fd  5e595a7c3fbb70448b6ff935  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z  5e59599c68369c24069630fe            20           True               NaN                
    1   stuff       []   10.0         default  5e598939cedcaf5b865ef99a  5e598939cedcaf5b865ef998  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z  5e59599c68369c24069630fe            20           True               NaN                
    2               []    NaN  not_applicable  5e59894f68369c2398eb68a8  5eaad4e5b513aed9a3c996a5  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z  5e59894f68369c2398eb68a9             0           True               NaN                
    3               []    NaN  not_applicable  5e598967cedcaf5b865efe3e  5eaad4ece3f1e0794372f8b2  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z  5e59894f68369c2398eb68a9             0           True               NaN                
    4   stuff       []    0.0         default  5e598976cedcaf5b865effd1  5e598976cedcaf5b865effd3  5f48bee4c54cf6b5e8048274  2020-08-28T08:23:00Z  5e59894f68369c2398eb68a9             0           True               NaN                
    5     NaN      NaN    NaN             NaN                       NaN                       NaN  5f48f708fe22ca4d15fb3b55  2020-08-28T12:22:32Z                       NaN           NaN            NaN               NaN             NaN