I am attempting to split and convert a column, in a pandas dataframe, with list of dictionary values into a new columns. Using Splitting dictionary/list inside a Pandas Column into Separate Columns as a reference things appear to fail because some of the values are NaN. When these rows are encountered an error is thrown, can't iterate over float and if I fillna
with None the error changes to a str
related error.
I have attempted to first use:
df.explode('freshness_grades')
df_new = pd.concat([df_new.drop('freshness_grades', axis=1), pd.DataFrame(df_new['freshness_grades'].tolist())], axis=1)
I did this to essentially change the list of dictionaries to a dictionary.
_id freshness_grades
0 57ea8d0d9c624c035f96f45e [{'creation_date': '2019-04-20T06:02:02.865000+00:00', 'end_date': '2015-07-23T18:43:00+00:00', 'grade': 'A', 'start_date': '2015-03-05T01:54:47+00:00'}, {'creation_date': '2019-04-20T06:02:02.865000+00:00', 'end_date': '2015-08-22T18:43:00+00:00', 'grade': 'B', 'start_date': '2015-07-23T18:43:00+00:00'}, {'creation_date': '2019-04-20T06:02:02.865000+00:00', 'end_date': '2015-10-21T18:43:00+00:00', 'grade': 'C', 'start_date': '2015-08-22T18:43:00+00:00'}, {'creation_date': '2019-04-20T06:02:02.865000+00:00', 'end_date': '2016-02-02T12:12:00+00:00', 'grade': 'D', 'start_date': '2015-10-21T18:43:00+00:00'}, {'creation_date': '2019-04-20T06:02:02.865000+00:00', 'end_date': '2016-07-22T18:43:00+00:00', 'grade': 'E', 'start_date': '2016-02-02T12:12:00+00:00'}, {'creation_date': '2019-04-20T06:02:02.865000+00:00', 'grade': 'F', 'start_date': '2016-07-22T18:43:00+00:00'}]
1 57ea8d0e9c624c035f96f460 [{'creation_date': '2019-06-25T10:54:40.387000+00:00', 'end_date': '2015-07-20T14:04:00+00:00', 'grade': 'A', 'start_date': '2015-07-14T08:48:49+00:00'}, {'creation_date': '2019-06-25T10:54:40.387000+00:00', 'end_date': '2015-08-19T14:04:00+00:00', 'grade': 'B', 'start_date': '2015-07-20T14:04:00+00:00'}, {'creation_date': '2019-06-25T10:54:40.387000+00:00', 'end_date': '2015-10-18T14:04:00+00:00', 'grade': 'C', 'start_date': '2015-08-19T14:04:00+00:00'}, {'creation_date': '2019-06-25T10:54:40.387000+00:00', 'end_date': '2016-02-02T12:12:00+00:00', 'grade': 'D', 'start_date': '2015-10-18T14:04:00+00:00'}, {'creation_date': '2019-06-25T10:54:40.387000+00:00', 'end_date': '2016-07-19T14:04:00+00:00', 'grade': 'E', 'start_date': '2016-02-02T12:12:00+00:00'}, {'creation_date': '2019-06-25T10:54:40.387000+00:00', 'grade': 'F', 'start_date': '2016-07-19T14:04:00+00:00'}]
2 57ea8d0e9c624c035f96f462 [{'creation_date': '2019-04-20T06:02:03.600000+00:00', 'end_date': '2015-09-29T09:46:00+00:00', 'grade': 'A', 'start_date': '2015-07-27T15:21:32+00:00'}, {'creation_date': '2019-04-20T06:02:03.600000+00:00', 'end_date': '2015-10-29T09:46:00+00:00', 'grade': 'B', 'start_date': '2015-09-29T09:46:00+00:00'}, {'creation_date': '2019-04-20T06:02:03.600000+00:00', 'end_date': '2015-12-04T12:12:00+00:00', 'grade': 'C', 'start_date': '2015-10-29T09:46:00+00:00'}, {'creation_date': '2019-04-20T06:02:03.600000+00:00', 'end_date': '2016-02-02T12:12:00+00:00', 'grade': 'D', 'start_date': '2015-12-04T12:12:00+00:00'}, {'creation_date': '2019-04-20T06:02:03.600000+00:00', 'end_date': '2016-09-28T09:46:00+00:00', 'grade': 'E', 'start_date': '2016-02-02T12:12:00+00:00'}, {'creation_date': '2019-04-20T06:02:03.600000+00:00', 'grade': 'F', 'start_date': '2016-09-28T09:46:00+00:00'}]
3 57ea8d0f9c624c035f96f466 [{'creation_date': '2019-04-20T06:02:04.305000+00:00', 'end_date': '2015-09-29T09:46:00+00:00', 'grade': 'A', 'start_date': '2015-09-09T13:20:14+00:00'}, {'creation_date': '2019-04-20T06:02:04.305000+00:00', 'end_date': '2015-10-29T09:46:00+00:00', 'grade': 'B', 'start_date': '2015-09-29T09:46:00+00:00'}, {'creation_date': '2019-04-20T06:02:04.305000+00:00', 'end_date': '2015-12-04T12:12:00+00:00', 'grade': 'C', 'start_date': '2015-10-29T09:46:00+00:00'}, {'creation_date': '2019-04-20T06:02:04.305000+00:00', 'end_date': '2016-02-02T12:12:00+00:00', 'grade': 'D', 'start_date': '2015-12-04T12:12:00+00:00'}, {'creation_date': '2019-04-20T06:02:04.305000+00:00', 'end_date': '2016-09-28T09:46:00+00:00', 'grade': 'E', 'start_date': '2016-02-02T12:12:00+00:00'}, {'creation_date': '2019-04-20T06:02:04.305000+00:00', 'grade': 'F', 'start_date': '2016-09-28T09:46:00+00:00'}]
4 57ea8d109c624c035f96f468 [{'creation_date': '2019-04-20T06:02:04.673000+00:00', 'end_date': '2015-11-04T12:12:00+00:00', 'grade': 'A', 'start_date': '2015-10-30T07:43:46+00:00'}, {'creation_date': '2019-04-20T06:02:04.673000+00:00', 'end_date': '2015-11-11T12:12:00+00:00', 'grade': 'B', 'start_date': '2015-11-04T12:12:00+00:00'}, {'creation_date': '2019-04-20T06:02:04.673000+00:00', 'end_date': '2015-12-04T12:12:00+00:00', 'grade': 'C', 'start_date': '2015-11-11T12:12:00+00:00'}, {'creation_date': '2019-04-20T06:02:04.673000+00:00', 'end_date': '2016-02-02T12:12:00+00:00', 'grade': 'D', 'start_date': '2015-12-04T12:12:00+00:00'}, {'creation_date': '2019-04-20T06:02:04.673000+00:00', 'end_date': '2016-11-03T12:12:00+00:00', 'grade': 'E', 'start_date': '2016-02-02T12:12:00+00:00'}, {'creation_date': '2019-04-20T06:02:04.673000+00:00', 'grade': 'F', 'start_date': '2016-11-03T12:12:00+00:00'}]
5 5f1eb63dbed8bd4f99e2a280 NaN
Using ehf first row as an example, I'm looking to achieve:
_id creation_date end_date grade start_date
0 57ea8d0d9c624c035f96f45e 2019-04-20T06:02:02.865000+00:00 2015-07-23T18:43:00+00:0 A 2015-03-05T01:54:47+00:00
0 57ea8d0d9c624c035f96f45e 2019-04-20T06:02:02.865000+00:00 2015-08-22T18:43:00+00:00 B 2015-07-23T18:43:00+00:00
...
I have begun with explode
, and that step works perfectly.
However, I have not attempted with reset_index()
. It's the pd.concat()
that is failing, and I am thinking it is either related to the NaN
or that there are in fact multiple dictionaries in the list. For example, after the explode()
i.e. {}, {}, {}
json_normalize
will not work on a column with NaN
NaN
with a {}
.# explode the list
df = df.explode('freshness_grades', ignore_index=True)
# now fill the NaN with an empty dict
df.freshness_grades = df.freshness_grades.fillna({i: {} for i in df.index})
# then normalize the column
df = df.join(pd.json_normalize(df.pop('freshness_grades')))
_id creation_date end_date grade start_date
0 57ea8d0d9c624c035f96f45e 2019-04-20T06:02:02.865000+00:00 2015-07-23T18:43:00+00:00 A 2015-03-05T01:54:47+00:00
1 57ea8d0d9c624c035f96f45e 2019-04-20T06:02:02.865000+00:00 2015-08-22T18:43:00+00:00 B 2015-07-23T18:43:00+00:00
2 57ea8d0d9c624c035f96f45e 2019-04-20T06:02:02.865000+00:00 2015-10-21T18:43:00+00:00 C 2015-08-22T18:43:00+00:00
3 57ea8d0d9c624c035f96f45e 2019-04-20T06:02:02.865000+00:00 2016-02-02T12:12:00+00:00 D 2015-10-21T18:43:00+00:00
4 57ea8d0d9c624c035f96f45e 2019-04-20T06:02:02.865000+00:00 2016-07-22T18:43:00+00:00 E 2016-02-02T12:12:00+00:00