I am using a transformer model for predicting the forex market. I transformed the open price data and calculated the difference between each 30 min interval. And converted the difference into tokens. The tokens are obtained by applying log1.5 to the difference. I obtained 28 types of tokens for 6 years. 14-27 represents a bull market and 0-13 tokens represent bear market. I created a transformer model in PyTorch and applied the data.
import torch
import math
import numpy as np
import copy
from torch import nn
from torch.utils.data import TensorDataset
from torch.utils.data import DataLoader
import ast
from numpy import load
import torch.nn as nn
import random
import time
import matplotlib.pyplot as plt
class Embedder(nn.Module):
def __init__(self, vocab_size, d_model):
super().__init__()
# print(vocab_size,d_model)
self.embed = nn.Embedding(vocab_size+1, d_model,padding_idx=0)
def forward(self, x):
# print(x.shape)
# print("Embed",self.embed(x).shape)
return self.embed(x)
class PositionalEncoder(nn.Module):
def __init__(self, d_model, max_seq_len = 500):
super().__init__()
self.d_model = d_model
# create constant 'pe' matrix with values dependant on
# pos and i
pe = torch.zeros(max_seq_len, d_model)
for pos in range(max_seq_len):
for i in range(0, d_model, 2):
pe[pos, i] = \
math.sin(pos / (10000 ** ((2 * i)/d_model)))
pe[pos, i + 1] = \
math.cos(pos / (10000 ** ((2 * (i + 1))/d_model)))
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x * math.sqrt(self.d_model)
seq_len = x.size(1)
x = x + torch.autograd.Variable(self.pe[:,:seq_len],requires_grad=False)
return x
def attention(q, k, v, d_k, mask=None, dropout=None):
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
mask = mask.unsqueeze(1)
scores = scores.masked_fill(mask == 0, -1e9)
scores = torch.nn.functional.softmax(scores, dim=-1)
if dropout is not None:
scores = dropout(scores)
output = torch.matmul(scores, v)
return output
class MultiHeadAttention(nn.Module):
def __init__(self, heads, d_model, dropout = 0.1):
super().__init__()
self.d_model = d_model
self.d_k = d_model // heads
self.h = heads
self.q_linear = nn.Linear(d_model, d_model)
self.v_linear = nn.Linear(d_model, d_model)
self.k_linear = nn.Linear(d_model, d_model)
self.dropout = nn.Dropout(dropout)
self.out = nn.Linear(d_model, d_model)
def forward(self, q, k, v, mask=None):
bs = q.size(0)
# perform linear operation and split into h heads
k = self.k_linear(k).view(bs, -1, self.h, self.d_k)
q = self.q_linear(q).view(bs, -1, self.h, self.d_k)
v = self.v_linear(v).view(bs, -1, self.h, self.d_k)
# transpose to get dimensions bs * h * sl * d_model
k = k.transpose(1,2)
q = q.transpose(1,2)
v = v.transpose(1,2)
# calculate attention using function we will define next
scores = attention(q, k, v, self.d_k, mask, self.dropout)
# concatenate heads and put through final linear layer
concat = scores.transpose(1,2).contiguous()\
.view(bs, -1, self.d_model)
output = self.out(concat)
return output
class FeedForward(nn.Module):
def __init__(self, d_model, d_ff=512, dropout = 0.1):
super().__init__()
# We set d_ff as a default to 2048
self.linear_1 = nn.Linear(d_model, d_ff)
self.dropout = nn.Dropout(dropout)
self.linear_2 = nn.Linear(d_ff, d_model)
def forward(self, x):
x = self.dropout(torch.nn.functional.relu(self.linear_1(x)))
x = self.linear_2(x)
return x
class Norm(nn.Module):
def __init__(self, d_model, eps = 1e-6):
super().__init__()
self.size = d_model
# create two learnable parameters to calibrate normalisation
self.alpha = nn.Parameter(torch.ones(self.size))
self.bias = nn.Parameter(torch.zeros(self.size))
self.eps = eps
def forward(self, x):
norm = self.alpha * (x - x.mean(dim=-1, keepdim=True)) \
/ (x.std(dim=-1, keepdim=True) + self.eps) + self.bias
return norm
class EncoderLayer(nn.Module):
def __init__(self, d_model, heads, dropout = 0.1):
super().__init__()
self.norm_1 = Norm(d_model)
self.norm_2 = Norm(d_model)
self.attn = MultiHeadAttention(heads, d_model)
self.ff = FeedForward(d_model)
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
def forward(self, x, mask):
x2 = self.norm_1(x)
x = x + self.dropout_1(self.attn(x2,x2,x2,mask))
x2 = self.norm_2(x)
x = x + self.dropout_2(self.ff(x2))
return x
class DecoderLayer(nn.Module):
def __init__(self, d_model, heads, dropout=0.1):
super().__init__()
self.norm_1 = Norm(d_model)
self.norm_2 = Norm(d_model)
self.norm_3 = Norm(d_model)
self.dropout_1 = nn.Dropout(dropout)
self.dropout_2 = nn.Dropout(dropout)
self.dropout_3 = nn.Dropout(dropout)
self.attn_1 = MultiHeadAttention(heads, d_model)
self.attn_2 = MultiHeadAttention(heads, d_model)
self.ff = FeedForward(d_model).cuda()
# self.ff = FeedForward(d_model)
def forward(self, x, e_outputs, src_mask, trg_mask):
x2 = self.norm_1(x)
x = x + self.dropout_1(self.attn_1(x2, x2, x2, trg_mask))
x2 = self.norm_2(x)
x = x + self.dropout_2(self.attn_2(x2, e_outputs, e_outputs,
src_mask))
x2 = self.norm_3(x)
x = x + self.dropout_3(self.ff(x2))
return x
# We can then build a convenient cloning function that can generate multiple layers:
def get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
class Encoder(nn.Module):
def __init__(self, vocab_size, d_model, N, heads):
super().__init__()
self.N = N
self.embed = Embedder(vocab_size, d_model)
self.pe = PositionalEncoder(d_model)
self.layers = get_clones(EncoderLayer(d_model, heads), N)
self.norm = Norm(d_model)
def forward(self, src, mask):
x = self.embed(src)
x = self.pe(x)
for i in range(self.N):
x = self.layers[i](x, mask)
return self.norm(x)
class Decoder(nn.Module):
def __init__(self, vocab_size, d_model, N, heads):
super().__init__()
self.N = N
self.embed = Embedder(vocab_size, d_model)
self.pe = PositionalEncoder(d_model)
self.layers = get_clones(DecoderLayer(d_model, heads), N)
self.norm = Norm(d_model)
def forward(self, trg, e_outputs, src_mask, trg_mask):
x = self.embed(trg)
x = self.pe(x)
for i in range(self.N):
x = self.layers[i](x, e_outputs, src_mask, trg_mask)
return self.norm(x)
class Transformer(nn.Module):
def __init__(self, src_vocab, trg_vocab, d_model, N, heads):
super().__init__()
self.encoder = Encoder(src_vocab, d_model, N, heads)
self.decoder = Decoder(trg_vocab, d_model, N, heads)
self.out = nn.Linear(d_model, trg_vocab)
def forward(self, src, trg, src_mask, trg_mask):
e_outputs = self.encoder(src, src_mask)
d_output = self.decoder(trg, e_outputs, src_mask, trg_mask)
output = self.out(d_output)
return output
def batchify(data, bsz):
nbatch = data.size(0) // bsz
data = data.narrow(0, 0, nbatch * bsz)
data = data.view(bsz, -1).t().contiguous()
return data
bptt = 128
class CustomDataLoader:
def __init__(self,source):
print("Source",source.shape)
self.batches = list(range(0, source.size(0) - 2*bptt))
# random.shuffle(self.batches)
# print(self.batches)
self.data = source
self.sample = random.sample(self.batches,120)
def batchcount(self):
return len(self.batches)
def shuffle_batches(self):
random.shuffle(self.batches)
def get_batch_from_batches(self,i):
if i==0:
random.shuffle(self.batches)
ind = self.batches[i]
seq_len = min(bptt,len(self.data)-1-ind)
src = self.data[ind:ind+seq_len]
tar = self.data[ind+seq_len-3:ind+seq_len-3+seq_len+1]
return src,tar
def get_batch(self,i):
# print(i,len(self.batches))
ind = self.sample[i]
seq_len = min(bptt,len(self.data)-1-ind)
src = self.data[ind:ind+seq_len]
tar = self.data[ind+seq_len-3:ind+seq_len-3+seq_len+1]
# tar = tar.view(-1)
if(i==len(self.sample)-1):
random.sample(self.batches,60)
# print("Data shuffled",self.batches[:10])
return src,tar
def get_batch(source, i):
seq_len = min(bptt, len(source) - 1 - i)
data = source[i:i+seq_len]
target = source[i+seq_len-3:i+seq_len-3+seq_len]
return data, target
def plot_multiple(data,legend):
fig,ax = plt.subplots()
for line in data:
plt.plot(list(range(len(line))),line)
plt.legend(legend)
plt.show()
def plot_subplots(data,legends,name):
names = ['Accuracy', 'Loss']
plt.figure(figsize=(10, 5))
for i in range(len(data)):
plt.subplot(121+i)
plt.plot(list(range(0,len(data[i])*3,3)),data[i])
plt.title(legends[i])
plt.xlabel("Epochs")
plt.savefig(name)
def evaluate(eval_model, data_source):
eval_model.eval() # Turn on the evaluation mode
total_loss = 0.
ntokens = 28
count = 0
with torch.no_grad():
cum_loss = 0
acc_count = 0
accs = 0
print(data_source.shape)
for batch, i in enumerate(range(0, data_source.size(0) - bptt*2, bptt)):
data, targets = get_batch(data_source, i)
# data,targets = dataLoader.get_batch(i)
data = data.transpose(0,1).contiguous()
targets= targets.transpose(0,1).contiguous()
trg_input = targets[:,:-1]
trg_output = targets[:,1:].contiguous().view(-1)
src_mask , trg_mask = create_masks(data,trg_input)
output = model(data,trg_input,src_mask,trg_mask)
output = output.view(-1,output.size(-1))
loss = torch.nn.functional.cross_entropy(output,trg_output-1)
accs += ((torch.argmax(output,dim=1)==trg_output).sum().item()/output.size(0))
# accs += ((torch.argmax(output,dim=1)==targets).sum().item()/output.size(0))
cum_loss += loss
count+=1
# print(epoch,"Loss: ",(cum_loss/count),"Accuracy ",accs/count)
return cum_loss/ (count), accs/count
def nopeak_mask(size,cuda_enabled):
np_mask = np.triu(np.ones((1, size, size)),
k=1).astype('uint8')
np_mask = torch.autograd.Variable(torch.from_numpy(np_mask) == 0)
if cuda_enabled:
np_mask = np_mask.cuda()
return np_mask
def create_masks(src, trg):
src_mask = (src != 0).unsqueeze(-2)
if trg is not None:
trg_mask = (trg != 0).unsqueeze(-2)
size = trg.size(1) # get seq_len for matrix
# print("Sequence lenght in mask ",size)
np_mask = nopeak_mask(size,True)
# print(np_mask.shape,trg_mask.shape)
if trg.is_cuda:
np_mask.cuda()
trg_mask = trg_mask & np_mask
else:
trg_mask = None
return src_mask, trg_mask
def create_padding_mask(seq):
seq = tf.cast(tf.math.equal(seq, 0), tf.float32)
# add extra dimensions to add the padding
# to the attention logits.
return seq[:, tf.newaxis, tf.newaxis, :] # (batch_size, 1, 1, seq_len)
if __name__ == '__main__':
data = []
dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
procsd_data = load("Eavg_open.npy")
print(set(procsd_data[:,0]))
train_data =torch.tensor(procsd_data)[:30000*2]
print(train_data.shape)
val_data = torch.tensor(procsd_data)[30000*2:35000*2]
test_data = torch.tensor(procsd_data)[35000*2:]
train_data = train_data.to(dev)
val_data = val_data.to(dev)
test_data = test_data.to(dev)
# train_data = train_data.transpose(1,0).contiguous()
# val_data = val_data.transpose(1,0).contiguous()
batch_size = 32
ntokens = 28
train_data = batchify(train_data,batch_size)
# print(train_data.shape)
val_data = batchify(val_data,batch_size)
test_data = batchify(train_data,batch_size)
# model = Transformer(n_blocks=3,d_model=256,n_heads=8,d_ff=256,dropout=0.5)
model = Transformer(28,28,64,3,4)
# model = torch.load("modela")
for p in model.parameters():
if p.dim() > 1:
nn.init.xavier_uniform_(p)
model.to(dev)
criterion = nn.CrossEntropyLoss()
lr = 0.00001 # learning rate
optim = torch.optim.Adam(model.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9)
#########training starts###########
accuracies = []
lossies = []
val_loss = []
val_accuracy = []
dataLoader = CustomDataLoader(train_data)
_onehot = torch.eye(29)
for epoch in range(500):
count = 0
cum_loss = 0
acc_count = 0
accs = 0
s = time.time()
# for i in range(len(range(0, train_data.size(0) - bptt))):
model.train()
# dataLoader.shuffle_batches()
for i in range(300):
# data, targets = get_batch(train_data, i)
# d = time.time()
hh = time.time()
data,targets = dataLoader.get_batch_from_batches(i)
data = data.transpose(0,1).contiguous()
targets= targets.transpose(0,1).contiguous()
# print(data.shape,targets.shape)
trg_input = targets[:,:-1]
trg_output = targets[:,1:].contiguous().view(-1)
# print(data.shape,trg_input.shape)
src_mask , trg_mask = create_masks(data,trg_input)
# print("Source Mask",src_mask)
# print("Target Mask",trg_mask)
output = model(data,trg_input,src_mask,trg_mask)
# output = output.view(-1,28)
output = output.view(-1,output.size(-1))
loss = torch.nn.functional.cross_entropy(output,trg_output-1)
accuracy = ((torch.argmax(output,dim=1)==trg_output).sum().item()/output.size(0))
accs += accuracy
cum_loss += loss.item();
loss.backward()
optim.step()
model.zero_grad()
optim.zero_grad()
print(i," Batch Loss", loss.item()," Batch Accuracy ",accuracy," Time taken ",time.time()-hh)
count+=1
data,targets = None,None
print(epoch,"Loss: ",(cum_loss/count),"Accuracy ",accs/count," Time Taken: ",time.time()-s)
if(epoch%3==0):
lossies.append(cum_loss/count)
accuracies.append(accs/count)
legend = ["accuracy","Loss"]
plot_subplots([accuracies,lossies],legend,"A&L_v1")
print("Valdata",val_data.shape)
eval_loss,eval_acc = evaluate(model,val_data)
val_accuracy.append(eval_acc)
val_loss.append(eval_loss)
plot_subplots([val_accuracy,val_loss],legend,"Val A&L_v1")
print(epoch,"Loss: ",(cum_loss/count),"Accuracy ",accs/count," Valid_loss: ",eval_loss," Valid_accuracy: ",eval_acc)
if len(val_loss)>0 and eval_loss < val_loss[-1]:
val_loss.append(eval_loss)
torch.save(model,"evalModel")
else:
val_loss.append(eval_loss)
torch.save(model,"evalModel")
if(epoch%5==0):
torch.save(model,"modela")
I got the following loss and accuracy while training:
What is causing this behaviour? Am I wrong in my tokenization method? Is it necessary to add any time embedding to the data?
Actually I made a small mistake in calculating accuracy.
accuracy = ((torch.argmax(output,dim=1)==trg_output).sum().item()/output.size(0))
Here the trg_output has tokens numbered from 1 to n but the argmax
function for output returns a range from 0 to n-1. So this is causing this problem.
So I modified the above line to
accuracy = ((torch.argmax(output,dim=1)==(trg_output-1) ).sum().item()/output.size(0))
Same should be applied in the evaluation function also.