I am retrieving data from an API which is timestamped in UNIX millisecond time and am trying to save this data to a CSV file. The data is in daily intervals but represented in UNIX millisecond time as mentioned.
I am using pandas functions to convert from milliseconds to datetime but is still not saving the data with the time of day part. My code is as follows:
ticker = 'tBTCUSD'
r = requests.get(url, params = params)
data = pd.DataFrame(r.json())
data.set_index([0], inplace = True)
data.index = pd.to_datetime(data.index, unit = 'ms' )
data.to_csv('bitfinex_{}_usd_{}.csv'.format(ticker[1:-3].lower(), '1D'), mode='a', header=False)
It saves the data as 2020-08-21
instead of 2020-08-21 00:00:00
. When I poll the API on say, an hourly or 15-minutely basis, that still includes the time but on daily intervals it doesn't. I was wondering if there is a step that I am missing to convert the time accordingly from UNIX millisecond to a %Y-%m-%d %H:%M:%S %Z
format?
You can always explicitly specify the format:
data.index = pd.to_datetime(data.index, unit='ms').strftime('%Y-%m-%d %H:%M:%S UTC')
print(data)
1 2 3 4 5
0
2020-09-10 00:00:00 UTC 10241.000000 10333.862868 10516.00000 10233.087967 3427.178984
2020-09-09 00:00:00 UTC 10150.000000 10240.000000 10359.00000 10010.000000 2406.147398
2020-09-08 00:00:00 UTC 10400.000000 10148.000000 10464.00000 9882.400000 6761.138356
2020-09-07 00:00:00 UTC 10275.967600 10397.000000 10430.00000 9913.800000 6301.951492
2020-09-06 00:00:00 UTC 10197.000000 10276.000000 10365.07422 10031.000000 2755.663001
... ... ... ... ... ...
2020-05-18 00:00:00 UTC 9668.200000 9714.825163 9944.00000 9450.000000 9201.536549
2020-05-17 00:00:00 UTC 9386.000000 9668.200000 9883.50000 9329.700000 9663.262087
2020-05-16 00:00:00 UTC 9307.600000 9387.952090 9580.00000 9222.000000 4157.691762
2020-05-15 00:00:00 UTC 9791.000000 9311.200000 9848.90000 9130.200000 11340.269781
2020-05-14 00:00:00 UTC 9311.967387 9790.954158 9938.70000 9266.200000 12867.687617