I have a data frame (see below) with over 50 000 values, each associated to a position (lat, lon). I would like to calculate the average value for each cell of a 5° latitude x 5° longitude grid in order to create a heat map. The final goal is to plot this grid over a bathymetry map.
I looked at similar questions like this one Average values of a point dataset to a grid dataset. But I couldn't replicate these examples with my own data. Saddly, I am stuck at the first step which is creating the grid.
My data look like this:
library(sp)
library(proj4)
coordinates(data) <- c("lon", "lat")
proj4string(data) <- CRS("+init=epsg:4326") #defined CRS to WGS 84
df<- data.frame(data)
> head(df)
lon lat value
1 -48.1673562 57.71791 822.9
2 -48.7430053 57.83568 1302.3
3 -48.5662663 57.82087 1508.0
4 -48.3252052 58.29815 224.0
5 -47.1716772 58.42417 38.0
6 -46.4098311 58.67651 431.2
7 -45.8071218 58.70022 365.6
8 -45.5558936 58.46975 50.0
Ideally, I would like to plot the grid on a map from the marmap package using ggplot2 (see below):
library(marmap)
library(ggplot2)
atlantic <- getNOAA.bathy(-80, 40, 0, 90, resolution = 25, keep = TRUE)
atl.df <- fortify(atlantic)
map <- ggplot(atl.df, aes(x=x, y=y)) +
geom_raster(aes(fill=z), data=atl.df) +
geom_contour(aes(z=z),
breaks=0, #contour for continent
colour="black", size=1) +
scale_fill_gradientn(values = scales::rescale(c(-5000, 0, 1, 2400)),
colors = c("steelblue4", "#C7E0FF", "gray40", "white"))
It sounds like you want to cut your numerical variables (lat & lon) into even intervals and summarise the values within each interval. Does the following work for you?
library(dplyr)
df2 <- df %>%
mutate(lon.group = cut(lon, breaks = seq(floor(min(df$lon)), ceiling(max(df$lon)), by = 5),
labels = seq(floor(min(df$lon)) + 2.5, ceiling(max(df$lon)), by = 5)),
lat.group = cut(lat, breaks = seq(floor(min(df$lat)), ceiling(max(df$lat)), by = 5),
labels = seq(floor(min(df$lat)) + 2.5, ceiling(max(df$lat)), by = 5))) %>%
group_by(lon.group, lat.group) %>%
summarise(value = mean(value), .groups = "drop") %>%
mutate(across(where(is.factor), ~as.numeric(as.character(.x))))
Sample data:
set.seed(444)
n <- 10000
df <- data.frame(lon = runif(n, min = -100, max = -50),
lat = runif(n, min = 30, max = 80),
value = runif(n, min = 0, max = 1000))
> summary(df)
lon lat value
Min. :-99.99 Min. :30.00 Min. : 0.1136
1st Qu.:-87.55 1st Qu.:42.45 1st Qu.: 247.2377
Median :-75.29 Median :55.11 Median : 501.4165
Mean :-75.12 Mean :55.01 Mean : 499.5385
3rd Qu.:-62.69 3rd Qu.:67.63 3rd Qu.: 748.8834
Max. :-50.01 Max. :80.00 Max. : 999.9600
Comparison of before & after data:
gridExtra::grid.arrange(
ggplot(df,
aes(x = lon, y = lat, colour = value)) +
geom_point() +
ggtitle("Original points"),
ggplot(df2,
aes(x = lon.group, y = lat.group, fill = value)) +
geom_raster() +
ggtitle("Summarised grid"),
nrow = 1
)