I have weather observation data received in JSON which I'd like to flatten.
Rep
in 'Period'
{'SiteRep': {'DV': {'type': 'Obs',
'Location': [{'i': '3002',
'lat': '60.749',
'lon': '-0.854',
'name': 'BALTASOUND',
'Period': [{'Rep': {'$': '1380',
'D': 'SW',
'G': '34',
'H': '79.5',
'P': '1019',
'S': '25',
'T': '7.9',
'V': '13000',
'W': '8',
'Dp': '4.6',
'Pt': 'F'},
'type': 'Day',
'value': '2019-12-31Z'},
{'Rep': [{'$': '0',
'D': 'SW',
'G': '32',
'H': '84.0',
'P': '1018',
'S': '21',
'T': '7.5',
'V': '13000',
'W': '8',
'Dp': '5.0',
'Pt': 'F'},
{'$': '60',
'D': 'SW',
'G': '34',
'H': '81.7',
'P': '1018',
'S': '22',
'T': '7.5',
'V': '12000',
'W': '8',
'Dp': '4.6',
'Pt': 'F'},
{'$': '120',
'D': 'SW',
'G': '36',
'H': '79.9',
'P': '1017',
'S': '24',
'T': '7.9',
'V': '11000',
'W': '8',
'Dp': '4.7',
'Pt': 'F'},
{'$': '180',
'D': 'SW',
'G': '40',
'H': '82.3',
'P': '1016',
'S': '23',
'T': '7.5',
'V': '13000',
'W': '8',
'Dp': '4.7',
'Pt': 'F'},
{'$': '240',
'D': 'SW',
'G': '33',
'H': '84.6',
'P': '1015',
'S': '18',
'T': '8.0',
'V': '12000',
'W': '8',
'Dp': '5.6',
'Pt': 'F'},
{'$': '300',
'D': 'SW',
'G': '33',
'H': '85.3',
'P': '1015',
'S': '24',
'T': '8.3',
'V': '11000',
'W': '8',
'Dp': '6.0',
'Pt': 'F'},
{'$': '360',
'D': 'WSW',
'G': '41',
'H': '89.0',
'P': '1014',
'S': '30',
'T': '8.5',
'V': '8000',
'W': '8',
'Dp': '6.8',
'Pt': 'F'},
{'$': '420',
'D': 'SW',
'G': '43',
'H': '89.6',
'P': '1013',
'S': '28',
'T': '8.7',
'V': '7000',
'W': '7',
'Dp': '7.1',
'Pt': 'F'},
{'$': '480',
'D': 'SW',
'G': '39',
'H': '88.4',
'P': '1013',
'S': '23',
'T': '8.7',
'V': '15000',
'W': '7',
'Dp': '6.9',
'Pt': 'F'},
{'$': '540',
'D': 'SW',
'G': '40',
'H': '84.3',
'P': '1013',
'S': '29',
'T': '9.1',
'V': '19000',
'W': '8',
'Dp': '6.6',
'Pt': 'F'},
{'$': '600',
'D': 'SW',
'G': '41',
'H': '85.4',
'P': '1012',
'S': '24',
'T': '8.9',
'V': '12000',
'W': '8',
'Dp': '6.6',
'Pt': 'F'},
{'$': '660',
'D': 'SW',
'G': '38',
'H': '84.2',
'P': '1012',
'S': '28',
'T': '9.2',
'V': '13000',
'W': '8',
'Dp': '6.7',
'Pt': 'F'},
{'$': '720',
'D': 'SW',
'G': '47',
'H': '83.6',
'P': '1011',
'S': '32',
'T': '9.4',
'V': '12000',
'W': '8',
'Dp': '6.8',
'Pt': 'F'},
{'$': '780',
'D': 'WSW',
'G': '45',
'H': '84.8',
'P': '1011',
'S': '30',
'T': '9.4',
'V': '11000',
'W': '8',
'Dp': '7.0',
'Pt': 'F'},
{'$': '840',
'D': 'SW',
'G': '43',
'H': '86.0',
'P': '1010',
'S': '28',
'T': '9.4',
'V': '11000',
'W': '7',
'Dp': '7.2',
'Pt': 'F'},
{'$': '900',
'D': 'WSW',
'G': '40',
'H': '85.4',
'P': '1009',
'S': '29',
'T': '9.4',
'V': '12000',
'W': '8',
'Dp': '7.1',
'Pt': 'F'},
{'$': '960',
'D': 'SW',
'G': '39',
'H': '86.0',
'P': '1009',
'S': '25',
'T': '9.2',
'V': '11000',
'W': '8',
'Dp': '7.0',
'Pt': 'F'},
{'$': '1020',
'D': 'SW',
'G': '33',
'H': '87.8',
'P': '1009',
'S': '23',
'T': '8.9',
'V': '11000',
'W': '8',
'Dp': '7.0',
'Pt': 'F'},
{'$': '1080',
'D': 'SW',
'G': '36',
'H': '85.5',
'P': '1008',
'S': '23',
'T': '8.9',
'V': '11000',
'W': '8',
'Dp': '6.6',
'Pt': 'F'},
{'$': '1140',
'D': 'SW',
'G': '40',
'H': '86.6',
'P': '1007',
'S': '28',
'T': '8.8',
'V': '14000',
'W': '8',
'Dp': '6.7',
'Pt': 'F'},
{'$': '1200',
'D': 'SSW',
'G': '39',
'H': '84.8',
'P': '1006',
'S': '28',
'T': '8.8',
'V': '13000',
'W': '8',
'Dp': '6.4',
'Pt': 'F'},
{'$': '1260',
'D': 'SSW',
'G': '37',
'H': '87.7',
'P': '1005',
'S': '26',
'T': '8.0',
'V': '15000',
'W': '8',
'Dp': '6.1',
'Pt': 'F'},
{'$': '1320',
'D': 'S',
'G': '37',
'H': '88.4',
'P': '1003',
'S': '24',
'T': '8.0',
'V': '13000',
'W': '8',
'Dp': '6.2',
'Pt': 'F'},
{'$': '1380',
'D': 'S',
'G': '38',
'H': '89.6',
'P': '1002',
'S': '29',
'T': '7.6',
'V': '11000',
'W': '8',
'Dp': '6.0',
'Pt': 'F'}],
'type': 'Day',
'value': '2020-01-01Z'}]}]}}}
The structure of JSON looks like this where each period has two reports:
SiteRep - DV - Location - Period (0) - Rep (0)
- Rep(1)
Period (1) - Rep (0)
- Rep(1)
The desired output would be the table where Location, Period and Report values are flattened.
| i | lat | lon | name |country | continent| elevation| name |Rep(0)$| Rep(0)D|Rep(0)G|..
|---|-----|------|-------|--------|----------|----------|------|-------|--------|-------|..
| | | | | | | | | | | |
I've managed to get Location flattened
normalised_data = pd.json_normalize(df['observations'], record_path=['SiteRep','DV','Location'])
so now my data looks like
i lat lon name Period country continent elevation
0 3002 60.749 -0.854 BALTASOUND [{'Rep': {'$': '1380', 'D': 'SW', 'G': '34', 'H': '79.5', 'P': '1019', 'S': '25', 'T': '7.9', 'V': '13000', 'W': '8', 'Dp': '4.6', 'Pt': 'F'}, 'type': 'Day', 'value': '2019-12-31Z'}, {'Rep': [{'$': '0', 'D': 'SW', 'G': '32', 'H': '84.0', 'P': '1018', 'S': '21', 'T': '7.5', 'V': '13000', 'W': '8', 'Dp': '5.0', 'Pt': 'F'}, {'$': '60', 'D': 'SW', 'G': '34', 'H': '81.7', 'P': '1018', 'S': '22', 'T': '7.5', 'V': '12000', 'W': '8', 'Dp': '4.6', 'Pt': 'F'}, {'$': '120', 'D': 'SW', 'G': '36', 'H': '79.9', 'P': '1017', 'S': '24', 'T': '7.9', 'V': '11000', 'W': '8', 'Dp': '4.7', 'Pt': 'F'}, {'$': '180', 'D': 'SW', 'G': '40', 'H': '82.3', 'P': '1016', 'S': '23', 'T': '7.5', 'V': '13000', 'W': '8', 'Dp': '4.7', 'Pt': 'F'}, {'$': '240', 'D': 'SW', 'G': '33', 'H': '84.6', 'P': '1015', 'S': '18', 'T': '8.0', 'V': '12000', 'W': '8', 'Dp': '5.6', 'Pt': 'F'}, {'$': '300', 'D': 'SW', 'G': '33', 'H': '85.3', 'P': '1015', 'S': '24', 'T': '8.3', 'V': '11000', 'W': '8', 'Dp': '6.0', 'Pt': 'F'}, {'$': '360', 'D': 'WSW', 'G': '41', 'H': '89.0', 'P': '1014', 'S': '30', 'T': '8.5', 'V': '8000', 'W': '8', 'Dp': '6.8', 'Pt': 'F'}, {'$': '420', 'D': 'SW', 'G': '43', 'H': '89.6', 'P': '1013', 'S': '28', 'T': '8.7', 'V': '7000', 'W': '7', 'Dp': '7.1', 'Pt': 'F'}, {'$': '480', 'D': 'SW', 'G': '39', 'H': '88.4', 'P': '1013', 'S': '23', 'T': '8.7', 'V': '15000', 'W': '7', 'Dp': '6.9', 'Pt': 'F'}, {'$': '540', 'D': 'SW', 'G': '40', 'H': '84.3', 'P': '1013', 'S': '29', 'T': '9.1', 'V': '19000', 'W': '8', 'Dp': '6.6', 'Pt': 'F'}, {'$': '600', 'D': 'SW', 'G': '41', 'H': '85.4', 'P': '1012', 'S': '24', 'T': '8.9', 'V': '12000', 'W': '8', 'Dp': '6.6', 'Pt': 'F'}, {'$': '660', 'D': 'SW', 'G': '38', 'H': '84.2', 'P': '1012', 'S': '28', 'T': '9.2', 'V': '13000', 'W': '8', 'Dp': '6.7', 'Pt': 'F'}, {'$': '720', 'D': 'SW', 'G': '47', 'H': '83.6', 'P': '1011', 'S': '32', 'T': '9.4', 'V': '12000', 'W': '8', 'Dp': '6.8', 'Pt': 'F'}, {'$': '780', 'D': 'WSW', 'G': '45', 'H': '84.8', 'P': '1011', 'S': '30', 'T': '9.4', 'V': '11000', 'W': '8', 'Dp': '7.0', 'Pt': 'F'}, {'$': '840', 'D': 'SW', 'G': '43', 'H': '86.0', 'P': '1010', 'S': '28', 'T': '9.4', 'V': '11000', 'W': '7', 'Dp': '7.2', 'Pt': 'F'}, {'$': '900', 'D': 'WSW', 'G': '40', 'H': '85.4', 'P': '1009', 'S': '29', 'T': '9.4', 'V': '12000', 'W': '8', 'Dp': '7.1', 'Pt': 'F'}, {'$': '960', 'D': 'SW', 'G': '39', 'H': '86.0', 'P': '1009', 'S': '25', 'T': '9.2', 'V': '11000', 'W': '8', 'Dp': '7.0', 'Pt': 'F'}, {'$': '1020', 'D': 'SW', 'G': '33', 'H': '87.8', 'P': '1009', 'S': '23', 'T': '8.9', 'V': '11000', 'W': '8', 'Dp': '7.0', 'Pt': 'F'}, {'$': '1080', 'D': 'SW', 'G': '36', 'H': '85.5', 'P': '1008', 'S': '23', 'T': '8.9', 'V': '11000', 'W': '8', 'Dp': '6.6', 'Pt': 'F'}, {'$': '1140', 'D': 'SW', 'G': '40', 'H': '86.6', 'P': '1007', 'S': '28', 'T': '8.8', 'V': '14000', 'W': '8', 'Dp': '6.7', 'Pt': 'F'}, {'$': '1200', 'D': 'SSW', 'G': '39', 'H': '84.8', 'P': '1006', 'S': '28', 'T': '8.8', 'V': '13000', 'W': '8', 'Dp': '6.4', 'Pt': 'F'}, {'$': '1260', 'D': 'SSW', 'G': '37', 'H': '87.7', 'P': '1005', 'S': '26', 'T': '8.0', 'V': '15000', 'W': '8', 'Dp': '6.1', 'Pt': 'F'}, {'$': '1320', 'D': 'S', 'G': '37', 'H': '88.4', 'P': '1003', 'S': '24', 'T': '8.0', 'V': '13000', 'W': '8', 'Dp': '6.2', 'Pt': 'F'}, {'$': '1380', 'D': 'S', 'G': '38', 'H': '89.6', 'P': '1002', 'S': '29', 'T': '7.6', 'V': '11000', 'W': '8', 'Dp': '6.0', 'Pt': 'F'}], 'type': 'Day', 'value': '2020-01-01Z'}] SCOTLAND EUROPE 15.0
1 3005 60.139 -1.183 LERWICK (S. SCREEN) [{'Rep': {'$': '1380', 'D': 'W', 'G': '41', 'H': '89.5', 'P': '1020', 'S': '28', 'T': '7.2', 'V': '15000', 'W': '8', 'Dp': '5.6', 'Pt': 'F'}, 'type': 'Day', 'value': '2019-12-31Z'}, {'Rep': [{'$': '0', 'D': 'WSW', 'G': '44', 'H': '88.1', 'P': '1019', 'S': '33', 'T': '6.9', 'V': '15000', 'W': '7', 'Dp': '5.1', 'Pt': 'F'}, {'$': '60', 'D': 'WSW', 'G': '47', 'H': '90.2', 'P': '1018', 'S': '36', 'T': '6.9', 'V': '15000', 'W': '7', 'Dp': '5.4', 'Pt': 'F'}, {'$': '120', 'D': 'WSW', 'G': '52', 'H': '88.8', 'P': '1018', 'S': '32', 'T': '6.9', 'V': '17000', 'W': '8', 'Dp': '5.2', 'Pt': 'F'}, {'$': '180', 'D': 'WSW', 'G': '47', 'H': '89.4', 'P': '1017', 'S': '34', 'T': '7.4', 'V': '12000', 'W': '8', 'Dp': '5.8', 'Pt': 'F'}, {'$': '240', 'D': 'WSW', 'G': '51', 'H': '89.4', 'P': '1016', 'S': '38', 'T': '7.4', 'V': '14000', 'W': '8', 'Dp': '5.8', 'Pt': 'F'}, {'$': '300', 'D': 'WSW', 'G': '48', 'H': '90.8', 'P': '1015', 'S': '33', 'T': '7.7', 'V': '13000', 'W': '8', 'Dp': '6.3', 'Pt': 'F'}, {'$': '360', 'D': 'WSW', 'G': '49', 'H': '92.0', 'P': '1015', 'S': '34', 'T': '7.9', 'V': '10000', 'W': '8', 'Dp': '6.7', 'Pt': 'F'}, {'$': '420', 'D': 'WSW', 'G': '47', 'H': '92.1', 'P': '1014', 'S': '38', 'T': '8.0', 'V': '8000', 'W': '8', 'Dp': '6.8', 'Pt': 'F'}, {'$': '480', 'D': 'WSW', 'G': '48', 'H': '94.0', 'P': '1014', 'S': '34', 'T': '7.9', 'V': '10000', 'W': '11', 'Dp': '7.0', 'Pt': 'F'}, {'$': '540', 'D': 'WSW', 'G': '55', 'H': '90.2', 'P': '1014', 'S': '40', 'T': '8.1', 'V': '12000', 'W': '7', 'Dp': '6.6', 'Pt': 'F'}, {'$': '600', 'D': 'WSW', 'G': '52', 'H': '88.9', 'P': '1013', 'S': '39', 'T': '8.3', 'V': '15000', 'W': '7', 'Dp': '6.6', 'Pt': 'F'}, {'$': '660', 'D': 'WSW', 'G': '54', 'H': '90.1', 'P': '1013', 'S': '39', 'T': '8.3', 'V': '12000', 'W': '7', 'Dp': '6.8', 'Pt': 'F'}, {'$': '720', 'D': 'WSW', 'G': '53', 'H': '90.9', 'P': '1012', 'S': '38', 'T': '8.5', 'V': '15000', 'W': '7', 'Dp': '7.1', 'Pt': 'F'}, {'$': '780', 'D': 'WSW', 'G': '53', 'H': '91.5', 'P': '1011', 'S': '39', 'T': '8.5', 'V': '12000', 'W': '7', 'Dp': '7.2', 'Pt': 'F'}, {'$': '840', 'D': 'WSW', 'G': '49', 'H': '92.7', 'P': '1011', 'S': '37', 'T': '8.3', 'V': '12000', 'W': '7', 'Dp': '7.2', 'Pt': 'F'}, {'$': '900', 'D': 'WSW', 'G': '51', 'H': '89.6', 'P': '1010', 'S': '34', 'T': '8.3', 'V': '12000', 'W': '7', 'Dp': '6.7', 'Pt': 'F'}, {'$': '960', 'D': 'WSW', 'G': '46', 'H': '88.9', 'P': '1010', 'S': '34', 'T': '8.3', 'V': '15000', 'W': '7', 'Dp': '6.6', 'Pt': 'F'}, {'$': '1020', 'D': 'WSW', 'G': '46', 'H': '86.5', 'P': '1009', 'S': '34', 'T': '8.4', 'V': '18000', 'W': '7', 'Dp': '6.3', 'Pt': 'F'}, {'$': '1080', 'D': 'WSW', 'G': '46', 'H': '84.8', 'P': '1009', 'S': '36', 'T': '8.5', 'V': '18000', 'W': '7', 'Dp': '6.1', 'Pt': 'F'}, {'$': '1140', 'D': 'SSW', 'G': '43', 'H': '88.3', 'P': '1009', 'S': '28', 'T': '7.8', 'V': '18000', 'W': '7', 'Dp': '6.0', 'Pt': 'F'}, {'$': '1200', 'D': 'SSW', 'G': '36', 'H': '88.9', 'P': '1008', 'S': '25', 'T': '7.5', 'V': '20000', 'W': '8', 'Dp': '5.8', 'Pt': 'F'}, {'$': '1260', 'D': 'SSW', 'G': '36', 'H': '88.9', 'P': '1006', 'S': '25', 'T': '7.5', 'V': '15000', 'W': '8', 'Dp': '5.8', 'Pt': 'F'}, {'$': '1320', 'D': 'SSW', 'G': '36', 'H': '89.6', 'P': '1005', 'S': '24', 'T': '7.1', 'V': '13000', 'W': '8', 'Dp': '5.5', 'Pt': 'F'}, {'$': '1380', 'D': 'SSW', 'G': '38', 'H': '86.4', 'P': '1003', 'S': '28', 'T': '7.2', 'V': '18000', 'W': '8', 'Dp': '5.1', 'Pt': 'F'}], 'type': 'Day', 'value': '2020-01-01Z'}] SCOTLAND EUROPE 82.0
2 3008 59.527 -1.628 FAIR ISLE [{'Rep': {'$': '1380', 'D': 'SW', 'G': '31', 'H': '83.8', 'P': '1022', 'S': '24', 'T': '6.4', 'V': '17000', 'W': '7', 'Dp': '3.9', 'Pt': 'F'}, 'type': 'Day', 'value': '2019-12-31Z'}, {'Rep': [{'$': '0', 'D': 'SW', 'G': '30', 'H': '88.1', 'P': '1022', 'S': '16', 'T': '6.0', 'V': '11000', 'W': '0', 'Dp': '4.2', 'Pt': 'F'}, {'$': '60', 'D': 'SW', 'H': '82.1', 'P': '1021', 'S': '18', 'T': '6.5', 'V': '15000', 'W': '0', 'Dp': '3.7', 'Pt': 'F'}, {'$': '120', 'D': 'WSW', 'G': '33', 'H': '74.3', 'P': '1020', 'S': '18', 'T': '6.6', 'V': '24000', 'W': '0', 'Dp': '2.4', 'Pt': 'F'}, {'$': '180', 'D': 'WSW', 'G': '30', 'H': '79.2', 'P': '1019', 'S': '23', 'T': '6.6', 'V': '20000', 'W': '0', 'Dp': '3.3', 'Pt': 'F'}, {'$': '240', 'D': 'SW', 'G': '31', 'H': '82.6', 'P': '1018', 'S': '21', 'T': '6.5', 'V': '17000', 'W': '2', 'Dp': '3.8', 'Pt': 'F'}, {'$': '300', 'D': 'SW', 'H': '81.5', 'P': '1018', 'S': '17', 'T': '6.5', 'V': '18000', 'W': '0', 'Dp': '3.6', 'Pt': 'F'}, {'$': '360', 'D': 'SW', 'H': '80.9', 'P': '1018', 'S': '16', 'T': '6.6', 'V': '15000', 'W': '0', 'Dp': '3.6', 'Pt': 'F'}, {'$': '420', 'D': 'SW', 'H': '78.7', 'P': '1017', 'S': '17', 'T': '7.2', 'V': '14000', 'W': '7', 'Dp': '3.8', 'Pt': 'F'}, {'$': '480', 'D': 'SW', 'H': '84.0', 'P': '1017', 'S': '18', 'T': '7.6', 'V': '18000', 'W': '8', 'Dp': '5.1', 'Pt': 'F'}, {'$': '540', 'D': 'WSW', 'G': '39', 'H': '84.1', 'P': '1016', 'S': '26', 'T': '8.2', 'V': '17000', 'W': '7', 'Dp': '5.7', 'Pt': 'F'}, {'$': '600', 'D': 'SW', 'G': '34', 'H': '78.8', 'P': '1016', 'S': '24', 'T': '8.0', 'V': '16000', 'W': '7', 'Dp': '4.6', 'Pt': 'F'}, {'$': '660', 'D': 'SW', 'G': '29', 'H': '82.3', 'P': '1016', 'S': '21', 'T': '8.1', 'V': '15000', 'W': '7', 'Dp': '5.3', 'Pt': 'F'}, {'$': '720', 'D': 'SSW', 'G': '30', 'H': '84.7', 'P': '1015', 'S': '18', 'T': '8.2', 'V': '10000', 'W': '7', 'Dp': '5.8', 'Pt': 'F'}, {'$': '780', 'D': 'SW', 'G': '30', 'H': '85.3', 'P': '1014', 'S': '23', 'T': '8.1', 'V': '12000', 'W': '7', 'Dp': '5.8', 'Pt': 'F'}, {'$': '840', 'D': 'SW', 'G': '32', 'H': '86.5', 'P': '1013', 'S': '23', 'T': '7.9', 'V': '9000', 'W': '7', 'Dp': '5.8', 'Pt': 'F'}, {'$': '900', 'D': 'SW', 'G': '33', 'H': '87.0', 'P': '1013', 'S': '22', 'T': '8.0', 'V': '12000', 'W': '7', 'Dp': '6.0', 'Pt': 'F'}, {'$': '960', 'D': 'SW', 'G': '31', 'H': '87.7', 'P': '1012', 'S': '22', 'T': '7.9', 'V': '14000', 'W': '7', 'Dp': '6.0', 'Pt': 'F'}, {'$': '1020', 'D': 'SSW', 'G': '31', 'H': '86.5', 'P': '1012', 'S': '22', 'T': '7.9', 'V': '11000', 'W': '7', 'Dp': '5.8', 'Pt': 'F'}, {'$': '1080', 'D': 'SSW', 'G': '32', 'H': '89.0', 'P': '1011', 'S': '21', 'T': '7.7', 'V': '10000', 'W': '7', 'Dp': '6.0', 'Pt': 'F'}, {'$': '1140', 'D': 'SSW', 'G': '33', 'H': '88.9', 'P': '1010', 'S': '25', 'T': '7.8', 'V': '11000', 'W': '7', 'Dp': '6.1', 'Pt': 'F'}, {'$': '1200', 'D': 'S', 'G': '36', 'H': '88.3', 'P': '1009', 'S': '26', 'T': '7.5', 'V': '15000', 'W': '8', 'Dp': '5.7', 'Pt': 'F'}, {'$': '1260', 'D': 'S', 'G': '43', 'H': '83.5', 'P': '1007', 'S': '33', 'T': '7.5', 'V': '15000', 'W': '8', 'Dp': '4.9', 'Pt': 'F'}, {'$': '1320', 'D': 'S', 'G': '43', 'H': '80.0', 'P': '1006', 'S': '31', 'T': '7.6', 'V': '15000', 'W': '7', 'Dp': '4.4', 'Pt': 'F'}, {'$': '1380', 'D': 'S', 'G': '45', 'H': '81.3', 'P': '1005', 'S': '30', 'T': '7.5', 'V': '17000', 'W': '8', 'Dp': '4.5', 'Pt': 'F'}], 'type': 'Day', 'value': '2020-01-01Z'}] SCOTLAND EUROPE 57.0
3 3017 58.954 -2.9 KIRKWALL [{'Rep': {'$': '1380', 'D': 'SW', 'H': '85.9', 'P': '1022', 'S': '21', 'T': '3.7', 'V': '35000', 'W': '0', 'Dp': '1.6', 'Pt': 'F'}, 'type': 'Day', 'value': '2019-12-31Z'}, {'Rep': [{'$': '0', 'D': 'SW', 'H': '84.0', 'P': '1022', 'S': '13', 'T': '3.9', 'V': '35000', 'W': '0', 'Dp': '1.5', 'Pt': 'F'}, {'$': '60', 'D': 'SW', 'H': '78.6', 'P': '1021', 'S': '11', 'T': '3.6', 'V': '50000', 'W': '0', 'Dp': '0.3', 'Pt': 'F'}, {'$': '120', 'D': 'SSW', 'H': '79.4', 'P': '1020', 'S': '15', 'T': '3.7', 'V': '55000', 'W': '0', 'Dp': '0.5', 'Pt': 'F'}, {'$': '180', 'D': 'SSW', 'H': '80.1', 'P': '1020', 'S': '9', 'T': '4.0', 'V': '45000', 'W': '0', 'Dp': '0.9', 'Pt': 'F'}, {'$': '240', 'D': 'S', 'H': '83.9', 'P': '1018', 'S': '10', 'T': '2.6', 'V': '35000', 'W': '0', 'Dp': '0.2', 'Pt': 'F'}, {'$': '300', 'D': 'W', 'H': '81.0', 'P': '1018', 'S': '2', 'T': '2.5', 'V': '45000', 'W': '0', 'Dp': '-0.4', 'Pt': 'F'}, {'$': '360', 'D': 'SSW', 'H': '75.3', 'P': '1018', 'S': '10', 'T': '3.8', 'V': '55000', 'W': '0', 'Dp': '-0.1', 'Pt': 'F'}, {'$': '420', 'D': 'SSW', 'H': '80.5', 'P': '1017', 'S': '11', 'T': '3.7', 'V': '50000', 'W': '0', 'Dp': '0.7', 'Pt': 'F'}, {'$': '480', 'D': 'SSW', 'H': '76.7', 'P': '1017', 'S': '16', 'T': '5.2', 'V': '50000', 'W': '0', 'Dp': '1.5', 'Pt': 'F'}, {'$': '540', 'D': 'SSW', 'H': '83.7', 'P': '1017', 'S': '14', 'T': '5.6', 'V': '30000', 'W': '2', 'Dp': '3.1', 'Pt': 'F'}, {'$': '600', 'D': 'SW', 'H': '85.7', 'P': '1016', 'S': '16', 'T': '5.5', 'V': '29000', 'W': '3', 'Dp': '3.3', 'Pt': 'F'}, {'$': '660', 'D': 'SW', 'H': '79.5', 'P': '1016', 'S': '14', 'T': '7.9', 'V': '35000', 'W': '8', 'Dp': '4.6', 'Pt': 'F'}, {'$': '720', 'D': 'SSW', 'H': '80.0', 'P': '1016', 'S': '16', 'T': '7.8', 'V': '30000', 'W': '7', 'Dp': '4.6', 'Pt': 'F'}, {'$': '780', 'D': 'SW', 'H': '83.4', 'P': '1015', 'S': '18', 'T': '7.6', 'V': '30000', 'W': '8', 'Dp': '5.0', 'Pt': 'F'}, {'$': '840', 'D': 'SW', 'H': '82.9', 'P': '1014', 'S': '15', 'T': '7.8', 'V': '40000', 'W': '7', 'Dp': '5.1', 'Pt': 'F'}, {'$': '900', 'D': 'SW', 'G': '29', 'H': '84.0', 'P': '1013', 'S': '22', 'T': '7.6', 'V': '40000', 'W': '7', 'Dp': '5.1', 'Pt': 'F'}, {'$': '960', 'D': 'SSW', 'H': '82.9', 'P': '1012', 'S': '18', 'T': '7.1', 'V': '50000', 'W': '0', 'Dp': '4.4', 'Pt': 'F'}, {'$': '1020', 'D': 'S', 'H': '86.3', 'P': '1012', 'S': '17', 'T': '6.6', 'V': '26000', 'W': '7', 'Dp': '4.5', 'Pt': 'F'}, {'$': '1080', 'D': 'S', 'H': '87.5', 'P': '1011', 'S': '21', 'T': '6.3', 'V': '28000', 'W': '7', 'Dp': '4.4', 'Pt': 'F'}, {'$': '1140', 'D': 'SSW', 'H': '88.1', 'P': '1010', 'S': '19', 'T': '6.4', 'V': '23000', 'W': '2', 'Dp': '4.6', 'Pt': 'F'}, {'$': '1200', 'D': 'S', 'G': '29', 'H': '87.6', 'P': '1009', 'S': '21', 'T': '6.6', 'V': '24000', 'W': '7', 'Dp': '4.7', 'Pt': 'F'}, {'$': '1260', 'D': 'S', 'G': '29', 'H': '83.9', 'P': '1007', 'S': '19', 'T': '6.7', 'V': '29000', 'W': '8', 'Dp': '4.2', 'Pt': 'F'}, {'$': '1320', 'D': 'S', 'G': '29', 'H': '81.7', 'P': '1006', 'S': '22', 'T': '6.8', 'V': '30000', 'W': '8', 'Dp': '3.9', 'Pt': 'F'}, {'$': '1380', 'D': 'S', 'G': '31', 'H': '82.4', 'P': '1004', 'S': '24', 'T': '7.1', 'V': '26000', 'W': '8', 'Dp': '4.3', 'Pt': 'F'}], 'type': 'Day', 'value': '2020-01-01Z'}] SCOTLAND EUROPE 26.0
4 3023 57.358 -7.397 SOUTH UIST RANGE [{'Rep': {'$': '1380', 'D': 'S', 'H': '89.4', 'P': '1025', 'S': '22', 'T': '7.3', 'V': '15000', 'W': '8', 'Dp': '5.7', 'Pt': 'F'}, 'type': 'Day', 'value': '2019-12-31Z'}, {'Rep': [{'$': '0', 'D': 'S', 'H': '93.3', 'P': '1024', 'S': '19', 'T': '7.3', 'V': '15000', 'W': '8', 'Dp': '6.3', 'Pt': 'F'}, {'$': '60', 'D': 'S', 'H': '94.6', 'P': '1023', 'S': '22', 'T': '7.9', 'V': '12000', 'W': '8', 'Dp': '7.1', 'Pt': 'F'}, {'$': '120', 'D': 'S', 'G': '33', 'H': '90.2', 'P': '1022', 'S': '26', 'T': '8.5', 'V': '25000', 'W': '7', 'Dp': '7.0', 'Pt': 'F'}, {'$': '180', 'D': 'S', 'G': '39', 'H': '87.7', 'P': '1021', 'S': '29', 'T': '8.1', 'V': '40000', 'W': '8', 'Dp': '6.2', 'Pt': 'F'}, {'$': '240', 'D': 'SSW', 'G': '39', 'H': '84.7', 'P': '1021', 'S': '29', 'T': '8.5', 'V': '20000', 'W': '8', 'Dp': '6.1', 'Pt': 'F'}, {'$': '300', 'D': 'SSW', 'G': '43', 'H': '85.9', 'P': '1020', 'S': '31', 'T': '8.5', 'V': '23000', 'W': '8', 'Dp': '6.3', 'Pt': 'F'}, {'$': '360', 'D': 'S', 'G': '38', 'H': '90.8', 'P': '1020', 'S': '25', 'T': '8.5', 'V': '15000', 'W': '8', 'Dp': '7.1', 'Pt': 'F'}, {'$': '420', 'D': 'SSW', 'G': '38', 'H': '92.0', 'P': '1019', 'S': '26', 'T': '8.4', 'V': '5000', 'W': '8', 'Dp': '7.2', 'Pt': 'F'}, {'$': '480', 'D': 'S', 'G': '38', 'H': '97.9', 'P': '1019', 'S': '26', 'T': '8.2', 'V': '3700', 'W': '9', 'Dp': '7.9', 'Pt': 'F'}, {'$': '540', 'D': 'SSW', 'G': '41', 'H': '97.9', 'P': '1018', 'S': '30', 'T': '8.4', 'V': '4800', 'W': '8', 'Dp': '8.1', 'Pt': 'F'}, {'$': '600', 'D': 'SSW', 'G': '37', 'H': '95.9', 'P': '1018', 'S': '28', 'T': '8.9', 'V': '11000', 'W': '8', 'Dp': '8.3', 'Pt': 'F'}, {'$': '660', 'D': 'SSW', 'G': '38', 'H': '93.4', 'P': '1018', 'S': '28', 'T': '9.1', 'V': '13000', 'W': '8', 'Dp': '8.1', 'Pt': 'F'}, {'$': '720', 'D': 'SSW', 'G': '37', 'H': '92.1', 'P': '1017', 'S': '28', 'T': '9.0', 'V': '15000', 'W': '8', 'Dp': '7.8', 'Pt': 'F'}, {'$': '780', 'D': 'S', 'G': '38', 'H': '90.9', 'P': '1016', 'S': '28', 'T': '9.1', 'V': '9000', 'W': '8', 'Dp': '7.7', 'Pt': 'F'}, {'$': '840', 'D': 'S', 'G': '41', 'H': '87.8', 'P': '1015', 'S': '30', 'T': '9.1', 'V': '19000', 'W': '8', 'Dp': '7.2', 'Pt': 'F'}, {'$': '900', 'D': 'S', 'G': '44', 'H': '87.2', 'P': '1014', 'S': '31', 'T': '9.1', 'V': '18000', 'W': '8', 'Dp': '7.1', 'Pt': 'F'}, {'$': '960', 'D': 'S', 'G': '46', 'H': '86.6', 'P': '1013', 'S': '31', 'T': '9.1', 'V': '24000', 'W': '8', 'Dp': '7.0', 'Pt': 'F'}, {'$': '1020', 'D': 'S', 'G': '43', 'H': '87.2', 'P': '1012', 'S': '29', 'T': '9.1', 'V': '25000', 'W': '8', 'Dp': '7.1', 'Pt': 'F'}, {'$': '1080', 'D': 'S', 'G': '44', 'H': '91.5', 'P': '1011', 'S': '33', 'T': '8.9', 'V': '14000', 'W': '7', 'Dp': '7.6', 'Pt': 'F'}, {'$': '1140', 'D': 'S', 'G': '47', 'H': '92.8', 'P': '1010', 'S': '33', 'T': '8.7', 'V': '7000', 'W': '8', 'Dp': '7.6', 'Pt': 'F'}, {'$': '1200', 'D': 'S', 'G': '48', 'H': '91.4', 'P': '1009', 'S': '33', 'T': '8.8', 'V': '12000', 'W': '8', 'Dp': '7.5', 'Pt': 'F'}, {'$': '1260', 'D': 'S', 'G': '47', 'H': '91.5', 'P': '1008', 'S': '34', 'T': '8.7', 'V': '18000', 'W': '8', 'Dp': '7.4', 'Pt': 'F'}, {'$': '1320', 'D': 'S', 'G': '46', 'H': '89.0', 'P': '1007', 'S': '33', 'T': '9.0', 'V': '19000', 'W': '8', 'Dp': '7.3', 'Pt': 'F'}, {'$': '1380', 'D': 'S', 'G': '44', 'H': '88.5', 'P': '1006', 'S': '34', 'T': '9.2', 'V': '12000', 'W': '8', 'Dp': '7.4', 'Pt': 'F'}], 'type': 'Day', 'value': '2020-01-01Z'}] SCOTLAND EUROPE 4.0
What would be the best way to flatten Period column ? is there a better way to achieve desired result?
Thank you.
P.S full json file is at https://wetransfer.com/downloads/5dd39d51e640d94a87e04297bfa1db3d20200909162616/c41164
json_normalize
to open the dicts
.explode
to explode the lists
of dicts
dict
in the list will move to a separate row.json_normalize
on the new column of dicts
'Location'
has a 'Period'
'Period'
is a list of dicts
.
dict
is 'Rep'
, which is a dict
dict
is also 'Rep'
, but it is a list
of dicts
'Period'
is normlized, the first 'Rep'
gets expanded into separate columns ('Rep.$'
, 'Rep.D'
, etc.), but the 2nd 'Rep'
is a column of NaN
and lists
of dicts
.lists
of dicts
in 'Rep'
get exploded, so each dict
is on a separate row.
dicts
are then normalized to separate columns ('$'
, 'D'
, etc.), the column headers are renamed to add 'Rep.'
to the front, and finally, used to fill the NaNs
in the corresponding columns in dataframe df
.import pandas as pd
import json
# read in the JSON file
with open('metoffice.json', encoding='utf-8') as f:
data = json.loads(f.read())
# normalize Location
df = pd.json_normalize(data, ['SiteRep', 'DV', 'Location'])
# explode the list of dicts in Period
df = df.explode('Period', ignore_index=True)
# normalize and join Period back to df
df = df.join(pd.json_normalize(df.Period)).drop(columns=['Period'])
# Rep contains NaNs or lists of dicts
# NaN can't be exploded so they must be filled with empty lists
# .fillna([]) does not work
df.Rep = df.Rep.fillna({i: [] for i in df.index})
# explode the lists on Rep
df = df.explode('Rep', ignore_index=True)
# fillna with {} to use json_normalize
df.Rep = df.Rep.fillna({i: {} for i in df.index})
# normalize Rep
rep = pd.json_normalize(df.Rep)
# add Rep. to beginning of column names in the rep dataframe
rep.columns = [f'Rep.{v}' for v in rep.columns]
# fillna on the the Rep. columns from the rep dataframe and drop the Rep column
df = df.fillna(rep).drop(columns=['Rep'])
'Rep'
, for the first 'Location'
, which matches the JSON file. i lat lon name country continent elevation type value Rep.$ Rep.D Rep.G Rep.H Rep.P Rep.S Rep.T Rep.V Rep.W Rep.Dp Rep.Pt
0 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2019-12-31Z 1380 SW 34 79.5 1019 25 7.9 13000 8 4.6 F
1 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 0 SW 32 84.0 1018 21 7.5 13000 8 5.0 F
2 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 60 SW 34 81.7 1018 22 7.5 12000 8 4.6 F
3 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 120 SW 36 79.9 1017 24 7.9 11000 8 4.7 F
4 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 180 SW 40 82.3 1016 23 7.5 13000 8 4.7 F
5 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 240 SW 33 84.6 1015 18 8.0 12000 8 5.6 F
6 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 300 SW 33 85.3 1015 24 8.3 11000 8 6.0 F
7 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 360 WSW 41 89.0 1014 30 8.5 8000 8 6.8 F
8 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 420 SW 43 89.6 1013 28 8.7 7000 7 7.1 F
9 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 480 SW 39 88.4 1013 23 8.7 15000 7 6.9 F
10 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 540 SW 40 84.3 1013 29 9.1 19000 8 6.6 F
11 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 600 SW 41 85.4 1012 24 8.9 12000 8 6.6 F
12 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 660 SW 38 84.2 1012 28 9.2 13000 8 6.7 F
13 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 720 SW 47 83.6 1011 32 9.4 12000 8 6.8 F
14 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 780 WSW 45 84.8 1011 30 9.4 11000 8 7.0 F
15 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 840 SW 43 86.0 1010 28 9.4 11000 7 7.2 F
16 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 900 WSW 40 85.4 1009 29 9.4 12000 8 7.1 F
17 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 960 SW 39 86.0 1009 25 9.2 11000 8 7.0 F
18 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 1020 SW 33 87.8 1009 23 8.9 11000 8 7.0 F
19 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 1080 SW 36 85.5 1008 23 8.9 11000 8 6.6 F
20 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 1140 SW 40 86.6 1007 28 8.8 14000 8 6.7 F
21 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 1200 SSW 39 84.8 1006 28 8.8 13000 8 6.4 F
22 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 1260 SSW 37 87.7 1005 26 8.0 15000 8 6.1 F
23 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 1320 S 37 88.4 1003 24 8.0 13000 8 6.2 F
24 3002 60.749 -0.854 BALTASOUND SCOTLAND EUROPE 15.0 Day 2020-01-01Z 1380 S 38 89.6 1002 29 7.6 11000 8 6.0 F
25 3005 60.139 -1.183 LERWICK (S. SCREEN) SCOTLAND EUROPE 82.0 Day 2019-12-31Z 1380 W 41 89.5 1020 28 7.2 15000 8 5.6 F