I want to run a custom tflite model on Android using TensorFlowLite (and using Kotlin).
Despite using the TFLite support library to create a supposedly correctly shaped input and output buffer I get the following error message everytime I'm calling my run()
method.
Here is my class:
class Inference(context: Context) {
private val tag = "Inference"
private var interpreter: Interpreter
private var inputBuffer: TensorBuffer
private var outputBuffer: TensorBuffer
init {
val mappedByteBuffer= FileUtil.loadMappedFile(context, "CNN_ReLU.tflite")
interpreter = Interpreter(mappedByteBuffer as ByteBuffer)
interpreter.allocateTensors()
val inputShape = interpreter.getInputTensor(0).shape()
val outputShape = interpreter.getOutputTensor(0).shape()
inputBuffer = TensorBuffer.createFixedSize(inputShape, DataType.FLOAT32)
outputBuffer = TensorBuffer.createFixedSize(outputShape, DataType.FLOAT32)
}
fun run() {
interpreter.run(inputBuffer.buffer, outputBuffer.buffer) // XXX: generates error message
}
}
And this is the error Message:
W/System.err: java.nio.BufferOverflowException
W/System.err: at java.nio.ByteBuffer.put(ByteBuffer.java:615)
W/System.err: at org.tensorflow.lite.Tensor.copyTo(Tensor.java:264)
W/System.err: at org.tensorflow.lite.Tensor.copyTo(Tensor.java:254)
W/System.err: at org.tensorflow.lite.NativeInterpreterWrapper.run(NativeInterpreterWrapper.java:170)
W/System.err: at org.tensorflow.lite.Interpreter.runForMultipleInputsOutputs(Interpreter.java:347)
W/System.err: at org.tensorflow.lite.Interpreter.run(Interpreter.java:306)
I have only initialized the input and output buffers and did not write any data to it yet.
I'm using these gradle dependencies:
implementation 'org.tensorflow:tensorflow-lite:0.0.0-nightly'
implementation 'org.tensorflow:tensorflow-lite-gpu:0.0.0-nightly'
implementation 'org.tensorflow:tensorflow-lite-support:0.0.0-nightly'
The .tflite model was built with these TensorFlow versions:
tensorflow 2.3.0
tensorflow-cpu 2.2.0
tensorflow-datasets 3.1.0
tensorflow-estimator 2.3.0
tensorflow-gan 2.0.0
tensorflow-hub 0.7.0
tensorflow-metadata 0.22.0
tensorflow-probability 0.7.0
tensorflowjs 1.7.4.post1
Any thoughts or hints are highly appreciated, thank you.
Does adding .rewind() to your input and output buffer make it work? If not, I wonder if your input or output tensor is dynamic tensor? In which case the return shape is not usable this way.