Search code examples
rdplyrlagdata-wrangling

Is it possible to dplyr::lag the previous year and not the previous row?


Here is a small sample of my data

data = data.frame(
  Year = c("1994", "1995", "1996", "1997", "1998", "1999", "2000", "2001", "2004", "2006", "2007", "2008", "2009", "2010", "2011", "2012", "2013", "2014", "2017", "2017", "2017", "2018"),
  RepYear = c("NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "NA", "2", "3", "1", "NA"),
  Id = c("A013", "A013", "A013", "A013", "A013", "A013", "A013", "A013", "J633", "J633", "J633", "J633", "J633", "J633", "J633", "J633", "J633", "J633", "J633", "J633", "J633", "J633")
  )

   Year RepYear   Id
1  1994      NA A013
2  1995      NA A013
3  1996      NA A013
4  1997      NA A013
5  1998      NA A013
6  1999      NA A013
7  2000      NA A013
8  2001      NA A013
9  2004      NA J633
10 2006      NA J633
11 2007      NA J633
12 2008      NA J633
13 2009      NA J633
14 2010      NA J633
15 2011      NA J633
16 2012      NA J633
17 2013      NA J633
18 2014      NA J633
19 2017       2 J633
20 2017       3 J633
21 2017       1 J633
22 2018      NA J633

And this is what I would like to acomplish with dplyr::lag

   Year RepYear   Id PreviousYear
1  1994      NA A013         <NA>
2  1995      NA A013         1994
3  1996      NA A013         1995
4  1997      NA A013         1996
5  1998      NA A013         1997
6  1999      NA A013         1998
7  2000      NA A013         1999
8  2001      NA A013         2000
9  2004      NA J633         <NA>
10 2006      NA J633         2004
11 2007      NA J633         2006
12 2008      NA J633         2007
13 2009      NA J633         2008
14 2010      NA J633         2009
15 2011      NA J633         2010
16 2012      NA J633         2011
17 2013      NA J633         2012
18 2014      NA J633         2013
19 2017       2 J633         2014
20 2017       3 J633         2014
21 2017       1 J633         2014
22 2018      NA J633         2017

The issue is when the year is repeated like in the row 20 and 21 because i want previousyear = 2014 and not previous row 2017

This is what I tried:

data %>% arrange(Id, Year) %>%
  group_by(Id) %>%
  mutate(PreviousYear = lag(Year, 1)) %>%
  mutate(PreviousYear = if_else(Year == lag(Year), lag(PreviousYear, 1), PreviousYear)) %>% # Fix issue created by reapeted year
  mutate(PreviousYear = if_else(Year == lag(Year), lag(PreviousYear, 1), PreviousYear)) # idem

but it's extremely clumsy because aparently I need to reapet two time the function mutate to fix the two rows...

Thanks in advance

I.


Solution

  • One way would be to keep only values of Id and Year and then take the lag. You can then join this lagged dataframe to the original one to keep the number of rows same.

    library(dplyr)
    
    data %>%
      distinct(Id, Year) %>%
      group_by(Id) %>%
      mutate(prev_year = lag(Year)) %>%
      left_join(data, by = c('Year', 'Id'))
    
    #   Year   Id prev_year RepYear
    #1  1994 A013      <NA>      NA
    #2  1995 A013      1994      NA
    #3  1996 A013      1995      NA
    #4  1997 A013      1996      NA
    #5  1998 A013      1997      NA
    #6  1999 A013      1998      NA
    #7  2000 A013      1999      NA
    #8  2001 A013      2000      NA
    #9  2004 J633      <NA>      NA
    #10 2006 J633      2004      NA
    #11 2007 J633      2006      NA
    #12 2008 J633      2007      NA
    #13 2009 J633      2008      NA
    #14 2010 J633      2009      NA
    #15 2011 J633      2010      NA
    #16 2012 J633      2011      NA
    #17 2013 J633      2012      NA
    #18 2014 J633      2013      NA
    #19 2017 J633      2014       2
    #20 2017 J633      2014       3
    #21 2017 J633      2014       1
    #22 2018 J633      2017      NA