Search code examples
pythonalgorithmcluster-analysisdistribution

How do I find the 100 most different points within a pool of 10,000 points?


I have a set of 10,000 points, each made up of 70 boolean dimensions. From this set of 10,000, I would like to select 100 points which are representative of the whole set of 10,000. In other words, I would like to pick the 100 points which are most different from one another.

Is there some established way of doing this? The first thing that comes to my mind is a greedy algorithm, which begins by selecting one point at random, then the next point is selected as the most distant one from the first point, and then the second point is selected as having the longest average distance from the first two, etc. This solution doesn't need to be perfect, just roughly correct. Preferably, this solution of 100 points can also be found within ~10 minutes but finishing within 24 hours is also fine.

I don't care about distance, in particular, that's just something that comes to mind as a way to capture "differentness."

If it matters, every point has 10 values of TRUE and 60 values of FALSE.

Some already-built Python package to do this would be ideal, but I am also happy to just write the code myself something if somebody could point me to a Wikipedia article.

Thanks


Solution

  • Your use of "representative" is not standard terminology, but I read your question as you wish to find 100 items that cover a wide gamut of different examples from your dataset. So if 5000 of your 10000 items were near identical, you would prefer to see only one or two items from that large sub-group. Under the usual definition, a representative sample of 100 would have ~50 items from that group.

    One approach that might match your stated goal is to identify diverse subsets or groups within your data, and then pick an example from each group.

    You can establish group identities for a fixed number of groups - with different membership size allowed for each group - within a dataset using a clustering algorithm. A good option for you might be k-means clustering with k=100. This will find 100 groups within your data and assign all 10,000 items to one of those 100 groups, based on a simple distance metric. You can then either take the central point from each group or a random sample from each group to find your set of 100.

    The k-means algorithm is based around minimising a cost function which is the average distance of each group member from the centre of its group. Both the group centres and the membership are allowed to change, updated in an alternating fashion, until the cost cannot be reduced any further.

    Typically you start by assigning each item randomly to a group. Then calculate the centre of each group. Then re-assign items to groups based on closest centre. Then recalculate the centres etc. Eventually this should converge. Multiple runs might be required to find an good optimum set of centres (it can get stuck in a local optimum).

    There are several implementations of this algorithm in Python. You could start with the scikit learn library implementation.

    According to an IBM support page (from comment by sascha), k-means may not work well with binary data. Other clustering algorithms may work better. You could also try to convert your records to a space where Euclidean distance is more useful and continue to use k-means clustering. An algorithm that may do that for you is principle component analysis (PCA) which is also implemented in scikit learn.