I'm trying to implement RGB to HSV conversion from opencv in pure numpy using formula from here:
def rgb2hsv_opencv(img_rgb):
img_hsv = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2HSV)
return img_hsv
def rgb2hsv_np(img_rgb):
assert img_rgb.dtype == np.float32
height, width, c = img_rgb.shape
r, g, b = img_rgb[:,:,0], img_rgb[:,:,1], img_rgb[:,:,2]
t = np.min(img_rgb, axis=-1)
v = np.max(img_rgb, axis=-1)
s = (v - t) / (v + 1e-6)
s[v==0] = 0
# v==r
hr = 60 * (g - b) / (v - t + 1e-6)
# v==g
hg = 120 + 60 * (b - r) / (v - t + 1e-6)
# v==b
hb = 240 + 60 * (r - g) / (v - t + 1e-6)
h = np.zeros((height, width), np.float32)
h = h.flatten()
hr = hr.flatten()
hg = hg.flatten()
hb = hb.flatten()
h[(v==r).flatten()] = hr[(v==r).flatten()]
h[(v==g).flatten()] = hg[(v==g).flatten()]
h[(v==b).flatten()] = hb[(v==b).flatten()]
h[h<0] += 360
h = h.reshape((height, width))
img_hsv = np.stack([h, s, v], axis=-1)
return img_hsv
img_bgr = cv2.imread('00000.png')
img_rgb = cv2.cvtColor(img_bgr, cv2.COLOR_BGR2RGB)
img_rgb = img_rgb / 255.0
img_rgb = img_rgb.astype(np.float32)
img_hsv1 = rgb2hsv_np(img_rgb)
img_hsv2 = rgb2hsv_opencv(img_rgb)
print('max diff:', np.max(np.fabs(img_hsv1 - img_hsv2)))
print('min diff:', np.min(np.fabs(img_hsv1 - img_hsv2)))
print('mean diff:', np.mean(np.fabs(img_hsv1 - img_hsv2)))
But I get big diff:
max diff: 240.0
min diff: 0.0
mean diff: 0.18085355
Do I missing something?
Also maybe it's possible to write numpy code more efficient, for example without flatten
?
Also I have hard time finding original C++ code for cvtColor
function, as I understand it should be actually function cvCvtColor
from C code, but I can't find actual source code with formula.
From the fact that the max difference is exactly 240, I'm pretty sure that what's happening is in the case when both or either of v==r
, v==g
are simultaneously true alongside v==b
, which gets executed last.
If you change the order from:
h[(v==r).flatten()] = hr[(v==r).flatten()]
h[(v==g).flatten()] = hg[(v==g).flatten()]
h[(v==b).flatten()] = hb[(v==b).flatten()]
To:
h[(v==r).flatten()] = hr[(v==r).flatten()]
h[(v==b).flatten()] = hb[(v==b).flatten()]
h[(v==g).flatten()] = hg[(v==g).flatten()]
The max difference may start showing up as 120, because of that added 120 in that equation. So ideally, you would want to execute these three lines in the order b->g->r. The difference should be negligible then (still noticing a max difference of 0.01~, chalking it up to some round off somewhere).
h[(v==b).flatten()] = hb[(v==b).flatten()]
h[(v==g).flatten()] = hg[(v==g).flatten()]
h[(v==r).flatten()] = hr[(v==r).flatten()]