I have a custom templated container using a map and list being kept in sync. The map needs to hold MyList::const_iterator and the list needs to hold MyMap::const_iterator. The only solution I've been able to find is to pun one of the iterators, as in the example below.
Is there a proper way to forward declare this so that I don't need the ugly punning?
Runnable code available at http://coliru.stacked-crooked.com/a/a5eae03ad5090b27.
(There are definitely other approaches that could be used for the example, but that's out of scope. This is a snippet of a larger program. I'm simply trying to make this "circular" definition without UB.)
#include <iostream>
#include <list>
#include <unordered_map>
template<class ObjectT> class MyClass
{
private:
// SUMMARY: The map must contain an iterator to the list, and the list must contain an iterator to the map.
// I have not been able to figure out how to define that (circular), so I've punned an iterator to a different list for the map entry.
typedef std::list<ObjectT> PunnedList;
struct MapEntry
{
ObjectT m_object;
mutable typename PunnedList::const_iterator m_listIt; // Really a List::const_iterator, but that can't be defined.
};
typedef std::unordered_multimap<std::string, MapEntry> Map;
public:
struct ListEntry
{
typename Map::iterator m_mapIt;
const ObjectT& object() const
{
return m_mapIt->second.m_object;
}
const std::string& name() const
{
return m_mapIt->first;
}
};
private:
typedef std::list<ListEntry> List;
Map mMap;
List mList;
private:
typename List::const_iterator listiter_from_mapiter( typename Map::const_iterator& miter ) const
{
static_assert(sizeof(typename PunnedList::const_iterator) == sizeof(typename List::const_iterator));
return *(reinterpret_cast<typename List::const_iterator*>(&miter->second.m_listIt));
}
public:
typename List::const_iterator append( const std::string &name, const ObjectT& item )
{
static_assert(sizeof(typename PunnedList::const_iterator) == sizeof(typename List::const_iterator));
MapEntry entry{ item, typename PunnedList::const_iterator{} };
auto mapIter = mMap.insert({ name, entry });
mList.push_back({ mapIter });
auto iter = mList.cend();
--iter;
*(reinterpret_cast<typename List::const_iterator*>(&mapIter->second.m_listIt)) = iter;
return iter;
}
typename List::const_iterator begin() const
{
return mList.end();
}
typename List::const_iterator end() const
{
return mList.end();
}
void erase( typename List::const_iterator iter )
{
mMap.erase(iter->m_mapIt);
mList.erase( iter );
}
typename List::const_iterator find( const std::string &name ) const
{
auto range = mMap.equal_range(name);
for (auto mapIter = range.first; mapIter != range.second; ++mapIter)
{
// In the real program, there are additional criteria on the map entry, not needed for the example.
// if (mapIter is a match)
return listiter_from_mapiter(mapIter);
}
return mList.cend();
}
};
int main()
{
MyClass<int> container;
container.append("A",1);
container.append("B",2);
container.append("C",1);
std::cout << container.find("B")->object();
}
Forward-declaring at least one of your inner classes breaks the cycle:
template<class ObjectT> class MyClass
{
public:
struct ListEntry;
private:
typedef std::list<ListEntry> List;
// Rest of the class, using List as you like
Note that the following List::const_iterator
works thanks to std::list<T>
not requiring T
to be complete to be instantiated.