We have a machine learning classifier model that we have trained with a pandas dataframe and a standard sklearn pipeline (StandardScaler, RandomForestClassifier, GridSearchCV etc). We are working on Databricks and would like to scale up this pipeline to a large dataset using the parallel computation spark offers.
What is the quickest way to convert our sklearn pipeline into something that computes in parallel? (We can easily switch between pandas and spark DFs as required.)
For context, our options seem to be:
On option 2, Spark-Sklearn seems to be deprecated, but Databricks instead recommends that we use joblibspark. However, this raises an exception on Databricks:
from sklearn import svm, datasets
from sklearn.model_selection import GridSearchCV
from joblibspark import register_spark
from sklearn.utils import parallel_backend
register_spark() # register spark backend
iris = datasets.load_iris()
parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
svr = svm.SVC(gamma='auto')
clf = GridSearchCV(svr, parameters, cv=5)
with parallel_backend('spark', n_jobs=3):
clf.fit(iris.data, iris.target)
raises
py4j.security.Py4JSecurityException: Method public int org.apache.spark.SparkContext.maxNumConcurrentTasks() is not whitelisted on class class org.apache.spark.SparkContext
According to the Databricks instructions (here and here), the necessary requirements are:
pyspark>=2.4
scikit-learn>=0.21
joblib>=0.14
I cannot reproduce your issue in a community Databricks cluster running Python 3.7.5, Spark 3.0.0, scikit-learn 0.22.1, and joblib 0.14.1:
import sys
import sklearn
import joblib
spark.version
# '3.0.0'
sys.version
# '3.7.5 (default, Nov 7 2019, 10:50:52) \n[GCC 8.3.0]'
sklearn.__version__
# '0.22.1'
joblib.__version__
# '0.14.1'
With the above settings, your code snippet runs smoothly, and produces indeed a classifier clf
as:
GridSearchCV(cv=5, error_score=nan,
estimator=SVC(C=1.0, break_ties=False, cache_size=200,
class_weight=None, coef0=0.0,
decision_function_shape='ovr', degree=3,
gamma='auto', kernel='rbf', max_iter=-1,
probability=False, random_state=None, shrinking=True,
tol=0.001, verbose=False),
iid='deprecated', n_jobs=None,
param_grid={'C': [1, 10], 'kernel': ('linear', 'rbf')},
pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
scoring=None, verbose=0)
as does the alternative example from here:
from sklearn.utils import parallel_backend
from sklearn.model_selection import cross_val_score
from sklearn import datasets
from sklearn import svm
from joblibspark import register_spark
register_spark() # register spark backend
iris = datasets.load_iris()
clf = svm.SVC(kernel='linear', C=1)
with parallel_backend('spark', n_jobs=3):
scores = cross_val_score(clf, iris.data, iris.target, cv=5)
print(scores)
giving
[0.96666667 1. 0.96666667 0.96666667 1. ]