Here is my code.
import pandas as pd
import numpy as np
import json
from xgboost import XGBRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score, mean_squared_error
from sklearn.preprocessing import StandardScaler
training_data = pd.read_csv('/Users/aus10/Desktop/MLB_Data/Test_Training_Data/MLB_Training_Data.csv')
df_model = training_data.copy()
scaler = StandardScaler()
features = [['OBS', 'Runs']]
for feature in features:
df_model[feature] = scaler.fit_transform(df_model[feature])
test_data = pd.read_csv('/Users/aus10/Desktop/MLB_Data/Test_Training_Data/Test_Data.csv')
X = training_data.iloc[:,1] #independent columns
y = training_data.iloc[:,-1] #target column
X = X.values.reshape(-1,1)
results = []
# fit final model
model = XGBRegressor(objective="reg:squarederror", random_state=42)
model.fit(X, y)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=4)
y_train_pred = model.predict(X_train)
y_test_pred = model.predict(X_test)
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
print('MSE train: %.3f, test: %.3f' % (
round(mean_squared_error(y_train, y_train_pred),2),
round(mean_squared_error(y_test, y_test_pred),2)
))
print('R^2 train: %.3f, test: %.3f' % (r2_score(y_train, y_train_pred), r2_score(y_test, y_test_pred)))
# define one new data instance
index = 0
count = 0
while count < len(test_data):
team = test_data.loc[index].at['Team']
OBS = test_data.loc[index].at['OBS']
Xnew = [[ OBS ]]
# make a prediction
ynew = model.predict(Xnew)
# show the inputs and predicted outputs
results.append(
{
'Team': team,
'Runs': (round(ynew[0],2))
})
index += 1
count += 1
sorted_results = sorted(results, key=lambda k: k['Runs'], reverse=True)
df = pd.DataFrame(sorted_results, columns=[
'Team', 'Runs'])
writer = pd.ExcelWriter('/Users/aus10/Desktop/MLB_Data/ML/Results/Projected_Runs_XGBoost.xlsx', engine='xlsxwriter') # pylint: disable=abstract-class-instantiated
df.to_excel(writer, sheet_name='Sheet1', index=False)
df.style.set_properties(**{'text-align': 'center'})
pd.set_option('display.max_colwidth', 100)
pd.set_option('display.width', 1000)
writer.save()
and the error I'm getting is TypeError: Input data can not be a list.
The data coming from test_data
is a csv with a team name and obs which is a float
like this NYY 0.324
Every way to solve it I've seen is just to put it in a 2d array like I did - Xnew = [[ OBS ]]
,
but I'm still getting the error.
Is there something else I need to do to the test_data coming in? I tried using values.reshape
, but that didn't fix it either.
You need to transform your Xnew
:
Xnew = np.array(Xnew).reshape((1,-1))