I have address column in a table as shown below
>>> spark.sql("select add1 from test").show(10,False)
+---------------------------+
|add1 |
+---------------------------+
|PO BOX 1111DUBAI UAE |
|P.O. BOX 2222DUBAI - U.A.E|
+---------------------------+
I have to match with group of words and remove them from the column just for comparing purpose
I was able to replace a single word with empty space like below ('UAE' in this case)
spark.sql("select regexp_replace(add1,'UAE','') from test").show(10,False)
+---------------------------+
|regexp_replace(add1, UAE, )|
+---------------------------+
|PO BOX 1111DUBAI |
|P.O. BOX 2222DUBAI - U.A.E|
+---------------------------+
But I would like to remove all special characters and a group of stop words like {'UAE','U.A.E', 'U A E', 'PO', 'P O'}
Desired Output :
spark.sql("select regexp_replace(add1,'UAE','') from test").show(10,False)
+---------------------------+
|regexp_replace(add1, UAE, )|
+---------------------------+
|1111DUBAI |
|2222DUBAI |
+---------------------------+
Can someone help me to achieve this pls , Thanks !
here is how you can do it. Hoping it solve all your cases.
from pyspark.sql import functions as F
stop_words = {'UAE','U.A.E', 'U A E', 'PO', 'P O', 'BOX'}
df2 = df.withColumn(
"add1",
F.regexp_replace(F.col("add1"), r"[^a-zA-Z0-9\s]", "")
)
for stop_word in stop_words:
df2 = df2.withColumn(
"add1",
F.trim(F.regexp_replace(F.col("add1"), stop_word, ""))
)
df2.show()
+---------+
| add1|
+---------+
|1111DUBAI|
|2222DUBAI|
+---------+