I am trying to calculate DFFITS for GLM, where responses follow a Beta distribution. By using betareg
R package. But I think this package doesn't support influence.measures()
because by using dffits()
Code
require(betareg)
df<-data("ReadingSkills")
y<-ReadingSkills$accuracy
n<-length(y)
bfit<-betareg(accuracy ~ dyslexia + iq, data = ReadingSkills)
DFFITS<-dffits(bfit, infl=influence(bfit, do.coef = FALSE))
DFFITS
it yield
Error in if (model$rank == 0) { : argument is of length zero
I am a newbie in R. I don't know how to resolve this problem. Kindly help to solve this or give me some tips through R code that how to calculate DFFITs manually. Regards
dffits
are not implemented for "betareg"
objects, but you could try to calculate them manually.
According to this Stack Overflow Q/A we could write this function:
dffits1 <- function(x1, bres.type="response") {
stopifnot(class(x1) %in% c("lm", "betareg"))
sapply(1:length(x1$fitted.values), function(i) {
x2 <- update(x1, data=x1$model[-i, ]) # leave one out
h <- hatvalues(x1)
nm <- rownames(x1$model[i, ])
num_dffits <- suppressWarnings(predict(x1, x1$model[i, ]) -
predict(x2, x1$model[i, ]))
residx <- if (class(x1) == "betareg") {
betareg:::residuals.betareg(x2, type=bres.type)
} else {
x2$residuals
}
denom_dffits <- sqrt(c(crossprod(residx)) / x2$df.residual*h[i])
return(num_dffits / denom_dffits)
})
}
It works well for lm
:
fit <- lm(mpg ~ hp, mtcars)
dffits1(fit)
stopifnot(all.equal(dffits1(fit), dffits(fit)))
Now let's try betareg
:
library(betareg)
data("ReadingSkills")
bfit <- betareg(accuracy ~ dyslexia + iq, data=ReadingSkills)
dffits1(bfit)
# 1 2 3 4 5 6 7
# -0.07590185 -0.21862047 -0.03620530 0.07349169 -0.11344968 -0.39255172 -0.25739032
# 8 9 10 11 12 13 14
# 0.33722706 0.16606198 0.10427684 0.11949807 0.09932991 0.11545263 0.09889406
# 15 16 17 18 19 20 21
# 0.21732090 0.11545263 -0.34296030 0.09850239 -0.36810187 0.09824013 0.01513643
# 22 23 24 25 26 27 28
# 0.18635669 -0.31192106 -0.39038732 0.09862045 -0.10859676 0.04362528 -0.28811277
# 29 30 31 32 33 34 35
# 0.07951977 0.02734462 -0.08419156 -0.38471945 -0.43879762 0.28583882 -0.12650591
# 36 37 38 39 40 41 42
# -0.12072976 -0.01701615 0.38653773 -0.06440176 0.15768684 0.05629040 0.12134228
# 43 44
# 0.13347935 0.19670715
Looks not bad.
Notes:
suppressWarnings
in lines 5:6
of dffits1
. predict(bfit, ReadingSkills)
drops the contrasts
somehow, whereas predict(bfit)
does not (should practically be the same). However the results are identical: all.equal(predict(bfit, ReadingSkills), predict(bfit))
, thus ignoring the warnings be safe.