Search code examples
pysparkfeature-extraction

Comparing some columns of a PySpark dataframe based on other columns?


Let assume I have a pyspark dataframe (df1) with information of some users as:

+--------+--------+--------+--------+
|user_id |event_id|code    |City    |
+--------+--------+--------+--------+
|   user1| event1 | ABC    | LA     |
|   user1| event2 | ABC    | NYC    |
|   user2| event3 | DEF    | LA     |
|   user2| event4 | GHK    | LA     |
|   user3| event5 | DEF    | NYC    |
|   user3| event6 | DEF    | NYC    |
|   user3| event7 | ABC    | LA    |
+--------+--------+--------+--------+

In this dataframe we have repetetive user_ids, but event_ids are unique across dataset. Additionally the code and city for each user can be the same or different. I also have another pyspark dataframe (df2) like this based on above table:

+----------+----------+------------+
|event_id1 |event_id2 | user_match |
+----------+----------+------------+
| event1   | event2   | Ture       |
| event1   | event4   | False      |
| event2   | event3   | False      |
| event2   | event7   | False      |
| event5   | event6   | True       |
| event6   | event1   | False      |
+----------+----------+------------+

As you can see, I don't have all combinations. The goal is feature extraction (to detect users) based on their code and city in this way:

+----------+----------+------------+--------+--------+
|event_id1 |event_id2 | user_match |code    |City    |
+----------+----------+------------+--------+--------+
| event1   | event2   | Ture       | Ture   | False  |
| event1   | event4   | False      | False  | Ture   |
| event2   | event3   | False      | False  | False  |
| event2   | event7   | False      | Ture   | False  |
| event5   | event6   | True       | Ture   | Ture   |
| event6   | event1   | False      | False  | False  |
+----------+----------+------------+--------+--------+

I implemented this using Pandas in PySpark. But I wonder how I can write it using just PySpark APIs:

%spark2.pyspark

# select all or part of train pairs
num_train_samples = pdf2.shape[0]
feats_train_array = pdf2[0:num_train_samples]

# define a temp array
feats = np.zeros((num_train_samples, 1))

# list of feats
#
feats_titles = ["code", "City"]
                
# extract features
#
for ft in feats_titles:
    fvar = ft
    for i in range(num_train_samples):
    
        # read rows related to pairs
        info_pair0 = pdf1.loc[pdf1['eventId'] == pdf2[i][0]]
        info_pair1 = pdf1.loc[pdf1['eventId'] == pdf2[i][1]]
    
        # compare values
        feats_pair0 = (info_pair0[fvar].reset_index(drop=True)).iloc[0]
        feats_pair1 = (info_pair1[fvar].reset_index(drop=True)).iloc[0]
        if (feats_pair0==feats_pair1):
            feats[i] = 1
        else:
            feats[i] = 0
    feats_train_array = np.append(feats_train_array, feats, axis=1)

I think this will be a simpler code using PySpark APIs, but I can't figure it out.


Solution

  • Well, I don't know this is simpler but you can do this.

    from pyspark.sql.functions import *
    
    df1 = spark.read.option("header","true").option("inferSchema","true").csv("test1.csv")
    df2 = spark.read.option("header","true").option("inferSchema","true").csv("test2.csv") \
      .withColumn('user_match', col('user_match').cast('boolean'))
    
    df2.join(df1.withColumnRenamed('event_id', 'event_id1').drop('user_id').alias('a'), ['event_id1'], 'inner') \
       .join(df1.withColumnRenamed('event_id', 'event_id2').drop('user_id').alias('b'), ['event_id2'], 'inner') \
       .withColumn('code_match', when(expr('a.code = b.code'), True).otherwise(False)) \
       .withColumn('city_match', when(expr('a.City = b.City'), True).otherwise(False)) \
       .select(*df2.columns, 'code_match', 'city_match').show()
    
    +---------+---------+----------+----------+----------+
    |event_id1|event_id2|user_match|code_match|city_match|
    +---------+---------+----------+----------+----------+
    |   event1|   event2|      true|      true|     false|
    |   event1|   event4|     false|     false|      true|
    |   event2|   event3|     false|     false|     false|
    |   event2|   event7|     false|      true|     false|
    |   event5|   event6|      true|      true|      true|
    |   event6|   event1|     false|     false|     false|
    +---------+---------+----------+----------+----------+