I need to perform a function on each level of multiple columns in a data.table
. For example, using the lung
dataset from survival
:
library(survival)
library(data.table)
library(dplyr)
data(lung)
setDT(lung)
vars <- c("sex", "ph.ecog")
lung[, (vars) := lapply(.SD, factor), .SDcols = vars]
fit <- tibble()
for (i in levels(lung[, vars ])){
temp <-
coxph(
Surv(time, status) ~ i,
data = lung
) %>%
broom::tidy(exp=T)
fit <- bind_rows(fit, temp)
}
This is not working - how can I succeed?
Do you want to run the function for each level of vars
column or for each vars
column?
For the later, you can do :
do.call(rbind,lapply(vars, function(x) {
broom::tidy(coxph(reformulate(x, 'Surv(time, status)'), data = lung))
}))
# term estimate std.error statistic p.value conf.low conf.high
# <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#1 sex2 -0.531 0.167 -3.18 0.00149 -0.859 -0.203
#2 ph.ecog1 0.369 0.199 1.86 0.0634 -0.0205 0.758
#3 ph.ecog2 0.916 0.225 4.08 0.0000448 0.476 1.36
#4 ph.ecog3 2.21 1.03 2.15 0.0314 0.197 4.22
To simplify a bit since you are already using data.table
, you can use rbindlist
instead of do.call
+ rbind
.
To run this for levels in your data you can do :
do.call(rbind, lapply(vars, function(x) do.call(rbind,
lapply(levels(lung[[x]]), function(y)
broom::tidy(coxph(reformulate(x, 'Surv(time, status)'),
data = lung[lung[[x]] == y]))))))